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INTRODUCTION:

Increasing demand for energy and global warming issues require-

• Clean and less carbon emission generation resources. 

• Reconciled consistently increasing demand for energy.

• Projected by CEA that between 2017-22, the electrical energy requirement will 

grow by 5.51 percent cumulatively.
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3
Load Generation Balance Report, 2018-19 [online]



MOTIVATION:

Fig. 1. Wind power grid integration.
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Zaccheus O., et al., 2012,

Wang X., et al., 2011, 

Chang W., 2014
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Some of the advantages of accurate wind resource forecasting and its adequate integration into

powers system are:

• The need for additional balancing power.

• The need for reserve and ancillary services.

• Financial and technical risk of uncertainty

of wind power production.

• Better dispatch and UC of thermal 

generators.

• Better stability and reliability.

• More competitive market trading.

REDUCES ENABLES

ADVANTAGES OF WIND RESOURCE FORECASTING:

Temitope R.A., et al., 2012, Wang X., et al., 2011
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CLASSIFICATION OF WPF/WSF :

Very Short-term forecasting

Short-term forecasting

Medium-term forecasting

Long-term forecasting

Fig. 2. Distribution of power system applications with forecast 

horizon and spatial resolution.



WIND FORECASTING MODELS:

WIND FORECASTING MODELS

Physical 

Models

Machine 

Learning 

models

Statistical 

Models

NWP
Time series, 

ARIMA

ANN, linear 

regression,  

k-NN, etc.

Orography, Obstacles, 

Terrains, Temperature, 

etc. 

Historical time series 

data

Historical data for 

learning purposes

7Wang X., et al., 2011, Lei M., et al., 2009, Bhaskar M., et al., 2010
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TIME SERIES MODELS MATHEMATICAL FORMULATION:

𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−1
𝑦𝑡
ln = ln 𝑦𝑡

Mathematical Transformations for Stationarity:

ARIMA Model: 
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TIME SERIES UNIVARIATE ARIMA MODEL ALGORITHM

Fig. 3. Statistical ARIMA model algorithm developed in R-Studio. 9



MACHINE LEARNING ALGORITHMS:

MACHINE LEARNING

UNSUPERVISED LEARNINGSUPERVISED LEARNING

LINEAR REGRESSION

k- NEAREST NEIGHBOURS ‘k’ specifies the number of neighbours to be considered.

linear approach to model the relationship between a 

scalar response and one or more explanatory variable.

10Wang X., et al., 2011, Mitchell T.M., et al., 1997 [Online] 
Fig. 4. Voronoi Tessellation for k-NN. Fig. 5. k-NN decision making criteria. 



MACHINE LEARNING ALGORITHMS:

MACHINE LEARNING

UNSUPERVISED LEARNINGSUPERVISED LEARNING

ARTIFICIAL NEURAL 
NETWORK

Fig. 6. Basic MLP based ANN layers.

11Wang X., et al., 2011, Mitchell T.M., et al., 1997 [Online] 
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ANN MODEL MATHEMATICS:

Univariate ANN

objective function:

(minimize) 

𝑤𝑡 → 𝑤𝑡 + 𝛥𝑤𝑡

𝛽 → 𝛽 + 𝛥𝛽

For every new 

iteration:

𝑓 𝑥𝑖 , 𝑤𝑡 + 𝛥𝑤𝑡, 𝛽 + 𝛥𝛽 ≈ 𝑓 𝑥𝑖 , 𝑤𝑡, 𝛽 + 𝐺 𝛥𝑤𝑡 + 𝛥𝛽Compute optimized 

values of         and      :        𝛥𝑤𝑡 𝛥𝛽
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𝑤𝑡= synaptic weights,    = bias,    = number of neurons in hidden layer𝛽 ℎ



MACHINE LEARNING ALGORITHM:

Fig. 7. Machine learning models (linear regression/ k-NN/ANN) algorithm developed in R-Studio.
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CASE STUDY:

Dataset Source: NIWE, Chennai  (open source-trial dataset).

Location: Jaisalmer wind farm, Rajasthan, India – September 2018 - recorded @10 minutes.

Physical Parameters – Hub height-120 meters, 

Average wind speed-8.1166 m/sec

Fig. 8. Non-stationary time series wind speed data used 

for modelling the wind speed forecasting.

Fig. 9. Stationary differenced time series wind speed 

data used for modelling the wind speed forecasting. 14



GRAPHICAL RESULTS OF ARIMA:

Fig. 10. ACF and PACF plots for differenced wind speed series. Fig. 11. Forecasts of wind speed obtained using ARIMA.
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GRAPHICAL RESULTS OF k-NN AND ANN

Fig. 12. Forecasts of wind speed obtained using k-NN.
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Fig. 13. Forecasts of wind speed obtained using ANN.

Actual Wind

Speeds (m/sec)

Predicted Wind Speeds (m/sec)

ARIMA LR k-NN ANN

6.12 5.94 6.51 5.31 5.703

6.43 5.73 6.494 5.17 5.831

5.93 5.84 6.479 5.25 5.959

6.26 5.73 6.463 5.72 6.087

5.44 5.778 6.447 5.74 6.215

5.69 5.712 6.369 5.81 6.856

6.48 5.724 6.354 5.53 6.984

6.47 5.681 6.338 5.73 7.112

7.1 5.676 6.322 5.25 7.24

7.57 5.64 6.307 6.12 7.36

RMSE 0.834 0.830 0.920 0.472

MAE 0.782 0.654 0.864 0.415

Table I

Comparative results of univariate ARIMA, linear 

regression, k-NN and ANN models

Order of forecast accuracy:

ANN > LR> ARIMA > k-NN
16



Fig. 15. RMSE comparison for ARIMA, LR, k -NN, and ANN.Fig. 14. WSF comparative analysis using ARIMA, LR, k-NN, 

and ANN.

COMPARATIVE ANALYSIS:
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CONCLUSIONS:

 Numerical results imply that machine learning based ANN has maximum forecast accuracy out of

the four mentioned models.

 ANN fits the dataset best due to its enormous capacity to learn and predict.

 ARIMA model is not so accurate because the forecasts converge to the mean of the series after

some forecast values. Similar is the case of LR.

 k-NN is having the least accuracy because it is more a classification approach rather than

regression approach.

FUTURE SCOPE

 Propose an advanced WSF technique that considers the spatio-temporal dependency of WFs

located near each other.

 Impact assessment of spatio-temporal correlations in wind forecasting.
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