Functional requirements for Blackstart & Power system Restoration from Wind Power Plants

Anubhav Jain
PhD:
Blackstart & Islanding capabilities of Offshore Wind Power Plants
Supervisors:
Dr. Jayachandra N. Sakamuri, Dr. Ömer Göksu
& Dr. Nicolaos A. Cutululis
Blackout Impact

Blackout is *HILP* event

<table>
<thead>
<tr>
<th>Year</th>
<th>Location (Region)</th>
<th>Impact</th>
<th>People-affected (million), or Length (billion customer-hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>Brazil (S)</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>India (N)</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>US+Canada (NE)</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>EU</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>India (N,E,NE)</td>
<td>670 (largest in history)</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Philippines</td>
<td>6.3 (longest)</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Australia (S)</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Venezuela</td>
<td>30, >3.1</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

Increased risk of wide-area blackouts [1,2]
- High volume integration of RES far from loads
- Increased trans-national power exchanges
- Power electronics converter (PEC) interface
- Stronger network linking

Operation closer to dynamic stability limit

Large OWPPs with modern WTs can address Blackstart requirements targeted conventionally to large thermal plants: ENTSO-E codes

Steady winds far-from-shore, thus lesser availability-uncertainty
- Fast, fully-controlled, high-power environment-friendly BS capability of VSC-HVDC OWPP
- Advanced V,f control functionalities from state-of-art PE interface of modern WTs

\[P(\text{black-out} \mid \text{no-wind}) \rightarrow \text{LOW} \]

Grid forming WT,WPPs [3]

Reduce the overall impact of a blackout event
- Minimize or totally avoid use of backup diesel generator for auxiliary power, thus cost benefits
- No wait for completion of network reconstruction; controlled islanding to ensure continuity of power supply
- Allow DRU / LCC-with-smaller-filter, thus reduce costs, increase efficiency & reliability
Power System Restoration

Preparation
- To save generation & ensure no accidental energization of faulted devices during PSR plan.
- **Decision:** Assessment of post-blackout status of system.
- **Defense:** Plan suitable Sectionalizing Strategy.
- **Definition:** Plan suitable BSUs & Restoration path; Avoid re-blackout.

System Energization
- To energize auxiliaries of non-BSUs & restore bulk transmission network.
- **Blackstart:** pre-determined BSU(s) startup & operation, Non-BSU crank-up, Houseload.
- **V-propagation:** Zonal – Backbone (skeleton) energization, HV lines (Cap MVars)
- **Load recovery:** Priority & closest loads, Islanding.

Load Restoration
- To minimize un-served load, while satisfying system’s operational constraints.
- **Block Loading:** Max. size to avoid UF, & UV in weak grids.
- **Meshing:** Enhance resilience.
- **Synchronization:** Re-connect islands when stable.

Critical for PSR
- Stable & Robust Load Recovery

Stabilize V, f

DTU Wind Energy
Department of Wind Energy

Anubhav Jain 06/09/2019 4
BS Service Provider

Tasks

- Start-up independent of external supplies.
- Energize transmission/distribution network.
- Provide block loading of demand, in a stable power island.
- Crank-up other non-BS PGMs. ← Optional

Assets

Present

Future
BS Service Provider

- Tasks
- Assets
 - Self-starter eg. Diesel, BESS.
 - Cranking path (optional)
 - Main PGM(s)
- Present
- Future
BS Service Provider

- **Tasks**
- **Assets**

Present – *large thermal plants cranked up by*
- Pump-storage Hydro
- Gas-fired
- **HVDC** eg. DK-NO, IR-GB. \(\leftarrow\) *Top-bottom PSR*
- **Nuclear** – *security*
- Diesel, for OWPPs \(\leftrightarrow\) *BS by of OWPP*

Future – *alternate sources required \(\rightarrow\) resilience*
- *Changing* generation profile.
- RES \(\uparrow\) \(\rightarrow\) SG running hours \(\downarrow\)
- Large WPPs *can support* PSR [4,5], if not BS.
- ESS can mitigate *intermittency* issues for PSR.
Comparison

System Energization
- **Blackstart**: Self-start, Fuel supply, Restoration time.
- **V-propagation**: Var-requirement, V-management.
- **Load recovery**: V, f-management

Load Restoration
- **Block Loading**: P-requirement.
- **Islanding & TTH**
- **Synchronization**

Technical Requirements for Blackstart Service

Technical Capabilities of Wind Turbines

[Diagram showing BSU, Tx/Dx Network, Block Load]

DTU Wind Energy
Department of Wind Energy

Anubhav Jain
06/09/2019
8
Codes vs. Wind

- Diesel gen.
- Gas-fired plants.
- Pumped-storage hydro.
- Stored E (BESS).

- Onshore – NO.
- Offshore – can BS & self-sustain aux.; NOT ready to re-energize cables.

Innovative solutions → bright future: High P-density ESS at WTDC link & High E-density ESS at PoC.

Grid-following WTs connecting in initial stages of PSR → re-blackout.

System Energization

- Blackstart: Self-start

BSU

Tx/Dx

Network

Block

Load

Grid-forming
Codes vs. Wind

- 90% availability.
- Min. E (stored) for 3 sequential blackouts.
- Backup fuel supplies for 3-7 days.

- Aux. & Backup Diesel gen, on offshore platform.
- Large MW-scale OWPPs, further away from shore → steadier wind conditions → lower availability uncertainty.
- 10-20 BS-able WTs → reliability + cost benefits.

System Energization

- Blackstart: Fuel supply

BSU

DTU Wind Energy
Department of Wind Energy

Grid-forming
Codes vs. Wind

• **Blackstart:** Restoration time

- Startup time – 20 min for thermal units, 5 min for hydraulic.
- BSU must operate for at least 24 hrs; *not applicable to* pump-storage hydro.

- Startup time – 40 sec.
- Similar *relaxation* can help develop BS-service technology in WPPs.
BSU must absorb MVars generated by connection of overhead lines, low-loaded cables.

V-instability due to insufficient Var reserve → major blackouts.

FRT mode in WTGs – support V-recovery at PoC.

VRT, RCI in grid codes (DE, DK, IR, ES, UK).

Diversity Energization

- V-propagation: Var-requirement
Codes vs. Wind

- Soft (LV) energization
 - Cable MVar
 - Trafo Inrush
 - PSR time
- Long HV lines with unloaded trafo at remote end → energization is critical as possible resonance → high OV.
- Feeder restoration such as to limit increment of MVars generated.

- PEC interface → advanced V-control & V-support functionalities like fast Var response.
- Local V-control requirement expected in future grid codes, esp. DE & ES.

Grid-forming

Anubhav Jain 06/09/2019
Codes vs. Wind

- LFSM-O/U operation & f-control during OF/UF.
- Initial load restoration – small steps; nearest loads first.
- Before load pickup, f min. 50 Hz (preferably higher).
- 1 isochronous control gen & others in droop set-point control.
- Upward reserve for f-instabilities, eg. 70% (Elia), 50% (EirGrid).

PEC interface → fast (down-regulating) P-control → spinning reserve margin.

FFR by using KE – reduces initial RoCoF, but doesn’t support overall PSR.

J- emulation & POD expected in future grid codes, esp. ES & DE.

System Energization

- Load recovery: f-management

Grid-forming & Power-Delta Control

• Load recovery: f-management

Tx/Dx Network BlockLoad

System Energization

BSU

DTU Wind Energy
Department of Wind Energy
Codes vs. Wind

- **Block Loading:** P-requirement

 - 10 MW (Elia), 35-50 MW (UK).
 - f-range: 49-52 Hz (Elia), 47.5-52 Hz (UK).
 - V-range (Elia) \[6\]:

40 MW block load is only 10% of nominal power for a 400 MW WPP. Intermittency Risk.

Goal: high priority loads, non-BSU aux. with available margin for fluctuations.

Curtailment, **Power-Delta control**
Codes vs. Wind

- Islands connected (synchronization) when stable.
- Parallel operation of BSU with other PGMs, in an island.
- PGM with TTH → speed up PSR as no restart needed.
- Tennet Grid Codes for Islanding & Houseload operation.
- Houseload operation NOT used in PSR, except FR.

- OWPPs TTH with islanding of offshore/ regional onshore zone → early stage PSR support & f-instability defence.
Bridging the Gap

- **Grid-forming (BS-able) WTs** [7]
 - Self-start
 - V, f-control
- **Cable Vars**
 - Array cables ✓
 - Onshore Export cable ✗
- **Trafo transients**
 - Inrush → V-dips
 - Overexcitation → transient busbar OV
 - Resonance with long HV lines → OV
- **CIO**

Initial Results [8]
Considerations

- **Grid codes:** DK, DE, ES, UK, IR
 - PQ-control, V-support, FRT, J-response, P-quality, Protection.
 - Exempt from PSR services.
 - Major driver for WT technology (eg. RCI, VRT; J & POD).
 - Ongoing dialogue between TSO & Wind Industry.

- **Case Study:** 2016 South Australian Blackout (AEMO) ← UCIO
 - Protection settings – redesign required, especially in areas with high wind penetration.
 - CIO – practical measures for stable islanding required.
 - Wind intermittency & excessive speeds NOT material contributor to blackout.
 - Further investigation: WPP reduction during faults, WT over-speed cut-outs.

- **WPP early in PSR:**
 - BSU impact limited only to first 4-6 hrs of PSR.
 - Option for DK, DE, ES ← more familiarity with high wind share.
Thank You

This presentation is part of the InnoDC project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 765585.

This presentation reflects only the author's view. The Research Executive Agency and European Commission are not responsible for any use that may be made of the information it contains.
Target State 1

- **Housekeeping** – internal UPS / BESS [9]
- **Grid forming** [7] GSC + RSC
- **Down-regulation:** Power-curtailment / Idling modes

• Grid-formers: Grid-followers

• STATCOM mode – VAR compensation [12]

• Intelligent control-mode switching [11]
Target State 3

- **Stiff, controlled Voltage source** – WPPs coordinated parallel operation
- **Controlled Islanded Operation**: stability & robustness
 - Offshore & DC grid faults
 - Harmonic instabilities [13]
 - HVDC link resonance issues [14]
 - Substantial network configuration changes [15] eg. load pickups, WT connections/disconnections
Grid forming WT [7]

- Controls V_f at WTT
 - Inner loops - dq
 - C_i: limit current during transients/faults.
 - C_v: control WTT V
 - Outer loops – Droop=$VSM(v_{J,D})/PI/LL$
 - C_q: QLC
 - C_p: PLC
- Additions
 - Ext f-P droop ($\sim R$ in SG)
 - Ext Q-V droop ($\sim AVR$ in SG)
 - Virtual impedance (single/multiple f_j to damp inrush/OC/harmonics.)
VSG [16]

- Q-V & P-f (~SM)
- QLC: Q-V droop
- PLC:
 - VSM (virtual J, D)
- Addition [17]:
 - Ext f-P droop
 - Virtual admittance
 - Active damping
PSC [18]

- Q-V & P-f (~SM)
- QLC: PI (optional)
- PLC: P
 - Ext f-P droop
- AVC: (~ SM exciter, but I & not P)
 - Req'd for weak grids/islands
- CLC:
 - Normal mode: ~active damping (HF:R)
 - Faults: OC limit & switch to PLL
- Proven response for weak grids.
DPC [19]

- Q-V & P-f (~SM)
- QLC: I
- PLC: PI
- Addition:
 - Ext V-Q droop
 - Ext f-P droop
- Faults: current limitation ~ PSC
Distributed PLL \([20]\)

- PLC: PI \((d\text{-axis})\)
- QLC: P \((q\text{-axis})\)
- Addition:
 - PLL based fLC:
 \[V_{f_q} > 0 \Rightarrow f > f_0 \]
 Thus, \(V_{f_q}^* = k_f (f_{\text{ref}} - f) \)
Comparison

1. Distributed PLL
2. VSG
3. DPC
4. PSC
References

References

