Flexibilization of conventional Power Plants – The Indian Experience

Greening the Grid (GTG)
Renewable Integration and Sustainable Energy (RISE)
A Partnership between USAID/India and Government of India
Outline

- The Indian Electricity Landscape
- Rapid Transition in the Indian power sector
- Emerging Scenario & Need for Flexibility
- Barriers of Flexibilization
- International Experience and Indian Pathway – preparing for flexing of coal units
- Benchmarking
- Cycling Costs
- Summary
The Indian Electricity Sector landscape
Energy Mix
358 GW CAPACITY

RE Capacity
79.37 GW

Source-wise Generation 2018-19

Ownership
The Indian Power Market

- Mostly Long term physical contracts and on a day-ahead basis PPAs with two part tariff based on capacity charges and Variable Costs
- DSM (Deviation settlement Mechanism) and Anciallary Services (RRAS) to address intra-day energy requirement as well as system imbalances
- AGC introduced in few coal stations
- SCED
- Flexibility in generation and scheduling

Compensation mechanism for part load operation which partly compensates the generators for the extra cost incurred on account of efficiency deterioration and extra oil consumption.
Rapid Transition in the Indian Power Sector

<table>
<thead>
<tr>
<th></th>
<th>Today</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installed capacity</td>
<td>~358 GW</td>
<td>~948 GW by 2032</td>
</tr>
<tr>
<td>Generation (in BUs)</td>
<td>~1294 BUs</td>
<td>~1436 BUs by FY 20</td>
</tr>
<tr>
<td>Peak Load Demand</td>
<td>~183 GW</td>
<td>~229 GW (by FY 20)</td>
</tr>
<tr>
<td>Per capita consumption</td>
<td>~1149 kWh</td>
<td>~3026 kWh ... (World average)</td>
</tr>
<tr>
<td>Renewable capacity</td>
<td>~79 GW</td>
<td>175+ GW (by 2022)</td>
</tr>
<tr>
<td>AT & C Losses</td>
<td>~18.22 %</td>
<td>15% by FY 19</td>
</tr>
</tbody>
</table>

1. Government’s focus on attaining affordable “24x7 Power for All” by 2019.
2. Energy Sector growing at a CAGR of ~7%-8%.

Although coal will remain the mainstay of energy security in India, there will be a fundamental change in the business model of coal based stations.

Preparation and management of Flexible Operation of Fossil based plants will be a critical factor for survival in the Changed Business Environment and will need Realignment of Strategies.
Emerging Scenario & Need for Flexibility

As per NREL study on Grid Modeling for India (2016), for a 2022 scenario, technical minimum of 70% for coal-based plants would result in RE curtailment of about 3.7%. The curtailment reduces to 0.76% for a tech. min. of 40%.

Grid Evolution, Baseload → Cycling

Impacts of Plant Cycling on Damage Rates and the ultimate Costs of providing power

Critical risks of process safety, increased costs, higher probability of equipment failure and reduction in unit life associated with cycling will need effective management

The successful integration of 175 GW RE will depend on the flexibilisation of fossil plant. Favourable policy and market regulation will be the key drivers for success.

Source: CEA committee Report on Roadmap for flexible operation
Barriers to Flexibilization

Varying Coal Quality posed a major challenge to flexibilisation

Culture /Mindset
- Operating Expertise to be created
- Simulators for flexible operation
- New Analytical Tools required
- Increased Digitilisation

One time investment for making units flex ready.
Country-wide cost estimated at **14,000 crores for 82 GW capacity.**

Limited participation
- Most of the state Utilities yet to reduce minimum load levels
 - Geographical Concentration of Renewable
 - Transmission constraints
 - Curtailment of RE

In India, Market participation is limited. (Net Traded Energy is <
Largely under Long Term Contract arrangements (PPA), which have limited flexibility.

Flexibilisation for Integration of 175 GW RE
- Policy support, Regulatory Framework
- Incentivization through regulation or market needed.
- Grid codes, AGC, Ancillary services
International Experience and Indian Pathway – preparing for flexing of coal units
Key Interventions across India

- Task force on Flexibilization with IGEF support (CEA, NTPC, EEC, POSOCO, VGB, MOP)
 - Studies carried out at two units of NTPC
- Committee on Flexibilization under CEA roadmap for preparation of units for flexibilization
- Studies by OEM (SIEMENS, GE, BHEL)
- USAID’s GTG carried out techno-commercial studies at four units (NTPC & GSECL)
- GTG studies provided the first set of cost of cycling data for the Indian context.
- Various test runs carried at NTPC’s – Mouda and GSECL out under GTG-RISE Initiative.

Impact

- Increased Awareness/Capacity Building
- Assessment of capabilities.
- Test Run Demonstration of 40% Minimum Load
- Assessment of future levels of increased flexible operations.
- Assessment of technical issues and potential solutions for specific generation unit types associated with different specific flexible operations modes.
- Data generated for Cost of Cycling – Required for regulatory interventions
Initiative under GTG-RISE, USAID

Pilot supports technical interventions and operational changes at NTPC’s Ramagundam (200 MW unit), Jhajjar (500 MW unit) and GSECL Ukai TPS (200MW & 500 MW unit)

Stage 1: Techno Economic Assessment & Roadmap
- Technical due diligence and detailed feasibility assessment
- Establishing reliable costs of flexibilisation – capex as well as opex

Stage 2: Regulatory Pathway and Fleet Level Strategies
- Assistance in framing Regulatory Mechanisms for Flexibility
- Assistance in building fleet level strategies for NTPC / GSECL

Stage 3: Pilot Implementation
- Technical Assistance in pilot / fleet level implementation to NTPC
- Leverage private partnerships and contribution in investments

Stage 4: Scale up
- Assist in fleet-wide implementation and national scale up
- Capacity building of operators – Procedures and Operational Toolkits

2017
- Pilot Conceptualization
- On Boarding of Technical Assistance (TA) Firm
- Stakeholder Discussions & Data Collection
- TA Implementation Plan

2018
- Technical Assessment reports completed for NTPC and GSECL units
- Executive Exchanges to US
- Knowledge Dissemination Workshops

2019
- Regulatory Frameworks for flexibilization to CERC & GERC
- Pilot Test Runs & Fleet Wide Strategies
- Changes to Operating Procedures
- Executive Exchanges & Knowledge Dissemination Workshops

2020
- Facilitate fleet-wide adoption and National scale up
- Knowledge Dissemination Workshops
The biggest obstacle to achieving Unit Flexibility is the Culture.

– The entire organization needs to be invested in meeting the new market demands and keeping the coal units viable.

Flexible operation is a difficult mode of operation and even the most conservative approach will increase plant O&M costs along with per MW variable costs.

However those plants that can operate flexibly to meet market conditions while minimizing the financial impact of operating in this environment, will continue to be dispatched, at least for the near future.

Operations for Flexible Operations require a holistic perspective of the entire plant to avoid unintended consequences.

Revisiting the operational procedures, Training of O&M manpower can enhance flexibilization.

Plant operators need to be trained for an in-depth knowledge of every plant system, with broad understanding of combustion, heat transfer, plant control methodology, damage mechanisms such as creep and FAC, steam turbine operating limits, and emissions equipment.

Harsh Realities of Cyclic Operation

• Flexing with lack of awareness, can be disastrous
• Well known that cycling causes damage and when equipment degrades, performance degrades.
• Damage not immediate but accumulated and not easy to quantify
• By the time symptoms of damage is visible it may have become very costly to Correct
Options vs Costs for Coal Flexing in India

Does It Matter How Unit Flexibility is achieved?

Trade-off between Investment and Return required to be done

Operational Cost

No Intervention (Business as Usual)

Operational Alterations

Operational Alterations and Control & Instrumentation

Operational Alterations + C&I + Digitalisation/Fleet wide Monitoring

Operational Alterations + C&I + Digitalisation/ Fleet wide monitoring + Technological Intervention

Cost of Flexible Operations

- Cold Start
- Warm Start
- Hot Start
- High Turn Down/MTL
- Fast Ramp
- Load Following

Operational Changes / Training

Control & Instrumentation (C&I)

Fleet Monitoring/Maintenance Practices

Digitalisation

Technological Interventions

- Modify
- Upgrade

Increasing Investment

Operational Cost

Operational Alterations

Operational Alterations and Control & Instrumentation

Operational Alterations + C&I + Digitalisation/Fleet wide Monitoring

Operational Alterations + C&I + Digitalisation/ Fleet wide monitoring + Technological Intervention

Cost of Flexible Operations

- Cold Start
- Warm Start
- Hot Start
- High Turn Down/MTL
- Fast Ramp
- Load Following

Operational Changes / Training

Control & Instrumentation (C&I)

Fleet Monitoring/Maintenance Practices

Digitalisation

Technological Interventions

- Modify
- Upgrade

Technical Interventions for Flexible Operations
Flexible Future: Need for Benchmarking

Defining
- Defining from different perspectives

Measuring
- Metrics
- Quantifying

Operationalisation
- Sources, options
- Preparedness for Coal based plants
- Regulatory framework
- Market structure and mechanisms

Compensation/Incentivisation
- Cost components - EHS, EFOR, EOH, Reliability

Market Alignment of Metrics
- Merit order based on?
 - Variable Cost
 - Heat Rate
 - Emissions

Choosing which units to flex?
Will be based on technical capability and market mechanisms

Units to operate based on the value it can provide to the system
- Ramping
- Start-up Time
- Off line capabilities
- Spinning Reserves capability
- Primary reserves capability
- Minimum stable generation
- Automatic voltage regulation (MVAr)

Need to define new flexing products.
Categorisation of Units

Category

- **Base Load**
 - ECR<< State M.O.
 - GCV < 2800, VM < 15%
 - Supercri. (except 14 Units)

- **Flexible-Low Load**
 - ECR=> State M.O.(>Rs.2.5/KWH)
 - GCV > 2800, VM > 15%

- **Flex with Efficiency Retrofit**
 - Units>25 Years
 - Unit size-200 and above
 - HR> 2500

- **Flexible Daily Start**
 - ECR>> State M.O.
 - (unlikely to get schedule in 2022)
 - HR>2500,
 - >25 Years
 - HR>2600
 - Unit sizes<200 MW

- **Retire/replace**

Metrics

Country-wide Flexibility Potential based on universal Metrics

Total-82,049 MW, 302 Units

Flexible-Low Load 48,385 MW/139 Units
Flexible-Daily Start 12,924 MW/83 Units
Flex with Eff. Retrofit-20740 MW, 80 Units
Understanding the Total Costs distribution

It is necessary to tailor the overhauling and maintenance intervals for the particular unit on the basis of data available. The analysis of component-wise cost data is important.

- Metrics of equivalent operating hours, EHS is helpful.

Component-wise maintenance decisions can be taken on the importance, redundancy, safety etc.

- Systematic records of all components
- Optimise maintenance expenditure
- Overhauling duration, timing and scope - Greater OH frequency in later years of life and cycling
- Failure statistics
 - **Failure faults-independent of operation**
 - Due to construction, design, operating errors etc.
 - **Predictable faults and dependent on service time**
 - Wear and tear of ageing component
 - Corrosion, erosion and distortion
 - Creep and fatigue damage
 - Cycling

Predictive Tools: Estimated weekly damages, EFOR, Life management actions

Annual Cost of Cycling Distribution
Typical Flexing Costs

- **CAPEX**: One-time cost required for preparing units for flexing.
- **O&M costs**: Increased Forced Outages, Life consumption costs, Load Following Costs (sign increased ramp rates).
- **OPEX**: Start-up Cost (Aux. Power + Chemicals + Water + life consumption), Start-up Oil, Heat Rate effects due to Power Plant Cycling.
- **ECR costs**:

Table: 500 MW Unit and 200/210 MW Unit Oil Consumption

<table>
<thead>
<tr>
<th>Condition</th>
<th>500 MW Oil cons. in KI</th>
<th>200/210 MW Oil cons. in KI</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLD</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>WARM</td>
<td>50</td>
<td>30</td>
</tr>
<tr>
<td>HOT</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Graphs:
- **Impact on O&M cost - Additional INR Lakh/event**
- **% Deviation of Net Heat rate at various load conditions**

Source: GTG-RISE/Intertek

Source: GE
In Summary . . .

• **Flexible operation is a difficult mode of operation** and even the most conservative approach will increase plant O&M costs along with per MW variable costs.

• However, those plants that can operate flexibly to meet market conditions while minimizing the financial impact of operating in this environment, will continue to be dispatched, at least for the foreseeable future.

• Operations for Flexible Operations requires a holistic perspective of the entire plant be maintained to avoid unintended consequences.

• **Revisiting the operational procedures**, Training of O&M manpower can enhance flexibilization.

• Plant operators need to be trained for an **in-depth knowledge of every plant system**, with broad understanding of combustion, heat transfer, plant control methodology, damage mechanisms such as creep and FAC, steam turbine operating limits, and emissions equipment.

• **Market and operational rules** would be the key enabler for thermal flexibility.

• The **Stakeholders engagement including International cooperation** is critical at every step.

• The biggest obstacle to achieving Unit Flexibility is the **Culture**?

 – The entire organization needs to be invested in meeting the emerging demands and keeping the coal units viable.
• **RISE Contracting Officer Representative:** Monali Zeya Hazra, USAID India, mhzra@usaid.gov

• **Chief of Party:** Tushar Sud, RISE, tsud@deloitte.com