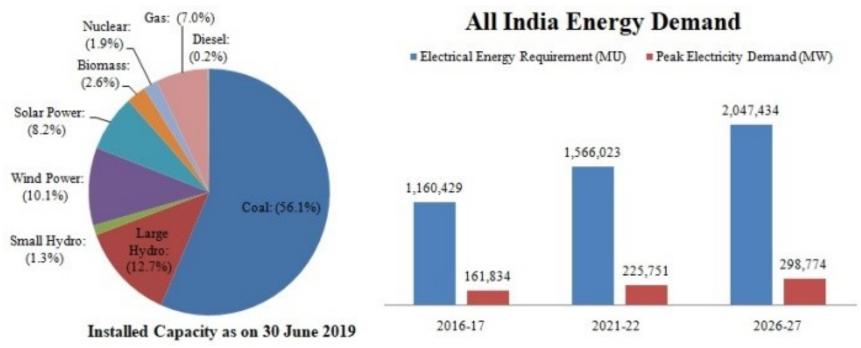
# Study of different use cases of the grid connected Battery Energy Storage System in India

#### Authors

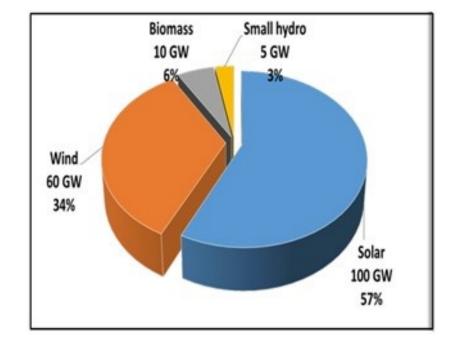
Mahesh.M, D.V.Bhaskar, T.N.Reddy, **Ram Krishan**, Jisha.R.K, Satish Kumar Singh


Greening the Grid (GTG) Program

A Partnership between USAID/India and Government of India

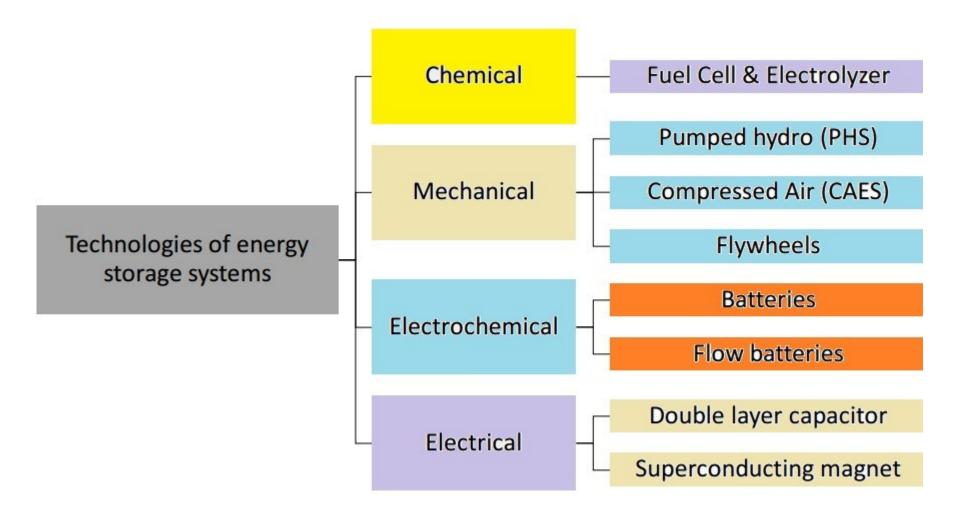
### Contents....

- 1. Indian Power scenario
- 2. Renewable energy and its challenges in India
- 3. Battery Energy Storage Systems and its applications
- 4. BESS-Pilot project experiences
- 5. Conclusion

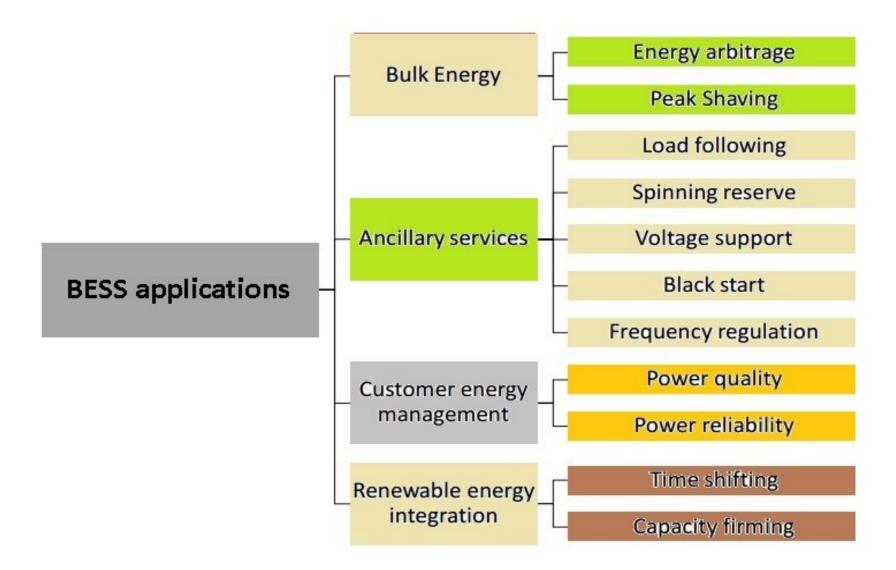

### **Indian Power scenario**



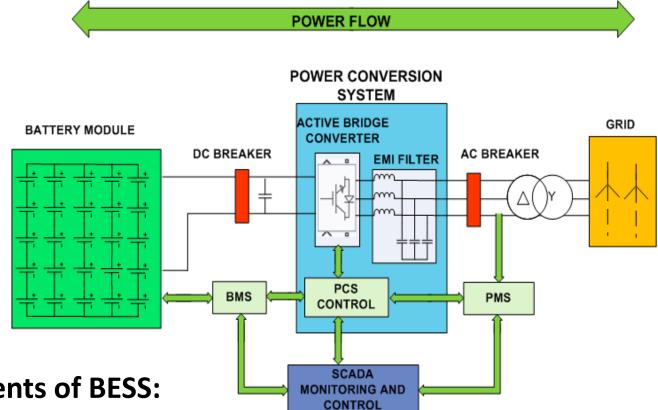
- Third largest grid in the world
- Rapid growth in power sector due to Economic growth, increase in industries, Urbanisation and increase in demand due to agriculture over couple of years
- More than 350GW installed capacity
- Largest transmission network with highest transmission voltage of 400KV, 765KV, 1200KV HVAC and ±500KV, ±800KV HVDC


#### **Renewable energy and its challenges in India**

- India is one of largest Renewable Energy Installed country
- It has target addition of 175GW REGeneration by 2022
- Challenges includes intermittency and uncertainty in RE generations
- Power quality issues THD, increase in demand of reactive power, voltage fluctuations etc.




**RE installation target by 2022** 


#### **Battery Energy Storage Systems and its applications**



#### **Battery Energy Storage Systems and its applications**



#### **Battery Energy Storage System: Architecture**



Major components of BESS:

- 1. Battery modules
- 2. Battery Management System (BMS)
- **3. Power Conversion System (PCS)**
- 4. Power Management System (PMS)
- 5. Bay Control Unit (BCU)
- 6. SCADA for monitoring and control

## **Pilot Project-Puducherry**

 POWERGRID has taken initiative to test different battery technologies for various grid scale applications. It has planned for three different technologies namely Li-ion, Advanced Lead Acid and Flow batteries of 1.25MW capacity together on pilot basis

| Advanced<br>Lead Acid                                                        | Lithium Ion                                                                                  | Flow battery                                                     |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| <ul> <li>Mature technology</li> </ul>                                        | • Fast maturing                                                                              | • Higher Depth of Discharge                                      |
| <ul> <li>Less<br/>Maintenance<br/>Requirement</li> <li>Economical</li> </ul> | <ul> <li>Large number<br/>of Pilots<br/>worldwide</li> <li>High Power<br/>Density</li> </ul> | <ul> <li>Longer Life</li> <li>Upcoming<br/>technology</li> </ul> |

## **Technical details of pilot implementations**

| Parameters                     | Li-ion Battery                            | Advanced lead Acid                     | Flow Battery                           |
|--------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------|
|                                | (BESS-I)                                  | Battery (BESS-II)                      | (BESS-III)                             |
| Capacity                       | 250 kWh                                   | 250 kWh                                | 1000 kWh                               |
| Power                          | 500kW for half-hour                       | 500kW for half-hour                    | 250kW for four hours                   |
| Charging rate                  | 3 hrs. from rated DoD to<br>Full Capacity | 3 hrs. from rated DoD to full capacity | 5 hrs. from rated DoD to full capacity |
| DC-DC Round-trip<br>efficiency | >90%                                      | >80%                                   | >75%                                   |
| Service Life                   | 10 years                                  | 10 years                               | 10 years                               |
| Life-cycle                     | 4000 cycles (900 MWh)                     | 3000 cycles (675 MWh)                  | 3000 cycles (2700 MWh)                 |
| Status                         | Under operation                           | Under operation                        | Under implementation                   |

# **Applications of BESS pilot project**

# **Under operation:**

- 1. Frequency Regulation
- 2. Energy Time Shift

# **Under implementation:**

- 1. Dynamic FR
- 2. RE firming
- 3. Load following
- 4. Reactive power compensation
- 5. Integrated applications

## **Frequency Regulation...**



Fig:Frequency, BESS power and SOC under FR application for 24-hours

**Regulatory requirements and commercial implications** 

- Ancillary services
- DSM regulations

## Conclusion

- Increasing penetration of uncertain and intermittent renewable energy sources such as solar and wind can cause various problems in grid such as dynamic frequency, voltage fluctuations and demand-supply imbalance.
- A fast responding storage device such as Battery Energy Storage System (BESS) could be used to mitigate these problems in real time operation of power system by providing various grid applications including Frequency Regulation, Energy time shift and RE firming etc.
- This paper discussed about various ancillary services such as frequency regulation and energy time shift by different battery technologies. A real case of installation of 1.25MW capacity of BESS with Li-ion, Advanced Lead Acid and Flow batteries initiated by POWERGRID has been considered for the study.
- Recommendations made based on performance of battery systems and real time data analysis.
- This paper also discussed about various ancillary services proposed by CERC. Based on regulations for deviation settlement mechanism and ancillary services, recommendations made for regulatory and commercial framework to be adopted by Regulators in allowing large RE integration in Indian grid scenarios.

