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Abstract— The stochastic behaviour of modern generation 
systems poses a formidable challenge for System Operator 
(SO) to maintain generation-demand balance. This imbalance 
should be corrected within a short span of time otherwise, 
system frequency would vary from the nominal value. Large 
frequency variations due to contingency, like generation 
outage or loss of load, may cause serious threats to stability 
and security of the system. This necessitates a wider 
understanding of the research challenges arising out of large 
penetration of Renewable Energy Sources (RES) in the grid 
and requires evolving system technologies and modelling to 
maintain reliable and secure system operation. This research 
attempts to develop a mechanism for PFR adequacy with the 
large integration of uncertain wind generation sources. A 
novel stochastic security constrained economic dispatch 
framework is proposed for the assessment of role and value of 
available and required PFR mapped with frequency security 
criteria like Rate of Change of Frequency (ROCOF) and 
Frequency Nadir. This addresses multiple concerns associated 
with PFR adequacy such as comprehensive modeling of 
dynamic frequency evolution after contingency, uncertainty 
characterization, and representation in system operation.  

Keywords- Economic dispatch, primary frequency response, 
system inertia, stochastic scheduling, uncertainty modelling, 
wind generation. 

I.  INTRODUCTION 
Rapid installation of wind/PV farms into the grid would 

displace the conventional generation at a fast rate. Bulk 
penetration of these generation sources has significant 
impact on power system security and reliability, due to 
uncertain and intermittent generation characteristics.  
Displacement of conventional generation would reduce the 
system inherent Primary Frequency Response (PFR) 
capability. Hence, maintaining system PFR adequacy and 
the prospect of new generation technologies interfacing with 
the grid create a range of system operational issues for the 
SO [1],[2]. 

Generation characteristics of wind are different from 
those of conventional generation. Wind Speed uncertainties 
increase the operational risk and affect generator output 
continuously. Normally, wind generators are installed with 
frequency relay that isolates after a frequency disturbance. 
When there is large wind penetration in the grid, a massive 
wind disconnection could lead to frequency instability. As 
wind generation share increases, the fluctuations of 

generated power increases whilst overall system inertia and 
PFR is reduced. This is due to the fact that wind generators 
directly can’t contribute to the system inertia and PFR 
capability. Wind generators are having no operation cost and 
are available throughout the scheduling time horizon [3]. 
There is a reduction in the frequency nadir and settling 
frequency because of the lack of inertial response and PFR 
from wind and the displacement of responsive conventional 
generation [4].  

Frequency at steady state and governor droop parameter 
is considered in UC formulation for determination of 
primary reserve adequacy [5]. However, dynamic frequency 
deviation modelling is not considered. This assessment is 
reported in security constrained UC (SCUC) and SUC 
framework [6], [7]. In SCUC formulation, linearized 
frequency constraints are formulated considering wind 
generation [8]. However, wind uncertainty impact and its 
modelling are not considered. Inertia and PFR constraints 
are included in Modified interval UC model with 
consideration of wind uncertainty [9]. However, stochastic 
security constraints are not investigated completely for PFR 
adequacy. This requires wider understanding of system’s 
frequency stability requirements with large wind 
penetration. 

This paper attempts to develop a stochastic security 
constrained economic dispatch model for PFR adequacy 
with the large integration of uncertain wind generation 
sources. A computational framework is proposed for the 
assessment of role and value of available and required PFR 
mapped with frequency security criteria like Rate of Change 
of Frequency (ROCOF) and Frequency Nadir. This 
addresses multiple concerns associated with PFR adequacy 
such as comprehensive modeling of dynamic frequency 
evolution after contingency, uncertainty characterization, 
and representation in system operation. Developed models 
and approaches have been illustrated through realistic case 
studies. Outcomes of this research would be helpful to 
understand the PFR challenges with large integration of 
wind generation.   

II. WIND SCENARIO GENARATION-REDUCTION 
Power system operations like generation scheduling and 

dispatch are decision-making problem. Decisions obtained 
through these operations impact the system security and 
reliability. Wind power uncertainty makes this problem 
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more critical [10]. Accurate modeling of involved 
uncertainties is necessary to solve these decision-making 
problems. The uncertainty of input parameters could be 
described by a stochastic process. The stochastic process 
could be characterized by scenarios. Scenarios are probable 
outcomes of arbitrary input with corresponding occurrence 
probability as shown in Fig. 1. Large quantum of scenarios 
is required for precise modeling of any stochastic process. 
Computational time required to solve scenario-based 
approach depends on the quantum of scenarios. Therefore, it 
is required to reduce original scenarios set, in a manner that 
reduced set has a lesser number of scenarios, with minimally 
changed statistical properties. 

 

 
Fig.1. Wind uncertainty modelling illustration through stochastic 
scenarios. 

Statistical ARIMA model is used to model random time 
series based on a number of historical data, pattern 
identification, and parameter estimation [11]. This is a 
hybrid of autoregressive and moving average model. The 
typical ARIMA ( , ,p d q ) model is expressed as 

( )( ) ( )01 d
p t q t       − = +                       (1)   

where t  is the prediction limit of wind & PV power at 
time interval t , d  is the degree of differentiation  is the 
backshift operator, ( )p  is the AR operator of order p , 

and ( )q   is the MA operator of order q . t  is a random 
number distributed normally with zero mean and constant 
variance. This is also known as white noise or error signal. 
If q  is assumed to be zero in ARIMA model, it behaves 
like an autoregressive (AR) model. Steps for scenario 
generation and reduction is as follows: 

A. Step-Wise Scenario Generation Procedure 
In this section, the step-wise procedure for wind power 
forecast is described.  

Step 1: Distribution Fitting: Take historical wind speed 
power data of any specified site. Fit these data into 
known probability distribution and estimate the 
parameters of this distribution. 

Step 2: Time Series Analysis: Estimate the order and 
parameter of time series ARIMA model. 

Step 3:Time Counter Initialization: Here 24-time periods 
are considered for day-ahead scenarios generation. 
Start with time 1t = . 

Step 4: Evaluate forecasting model. 
Step 5: Wind Speed to Power Conversion:  

Step 6: Check Time Counter: If desired time period 
counter, i.e. 24 is achieved, go to next step, 
otherwise update 1t t= +  and go to step 3. 

Step 7: Obtain scenarios. 

B. Step-Wise Scenario Reduction Procedure 
Large scenario quantum is necessary to precisely model 

any stochastic process. However, computational burden for 
solving scenario-based optimization models would increase 
due to the huge number of scenarios. This necessitates 
reduction of original scenario set in a manner to obtain 
reduced number of scenarios without changing the 
statistical properties [11]. The reduced scenario number is 
based on the problem type, which is to be optimized, and it 
must be less than one-fourth of generated scenarios. The 
basic idea of scenario reduction is to remove scenarios with 
very low occurrence probability and bundle scenarios that 
are very close. Accordingly, scenario-reduction algorithms 
determine a subset of scenarios and calculate probabilities 
for new scenarios, such that the reduced probability 
measure is closest to the original probability measure, in 
terms of a certain probability distance between the two 
measures [12].  
The scenario-reduction algorithm reduces and bundles the 
scenarios using the Kantorovich Distance (KD) matrix. KD 
is the probability distance between two different scenario 
sets that represent the same stochastic process. It is 
generally used to quantify the closeness of different 
scenario sets. KD assures that maximum possible scenario 
are reduced, without violating given tolerance criteria. 
Probability of all deleted scenarios is assumed to be zero. 
The new probability of preserved scenarios is equal to sum 
of its former probability and the probability of deleted 
scenarios that are closest to it [13]. 
Step 1: Collect Generated Scenarios: All scenarios 

generated by using algorithm described in previous 
section are collected. Assign probabilities of 
collected scenarios in such a way that sum of 
probability of all scenarios at any time step must be 
unity. Probability of each scenario s is1/ sN , where

sN is total number of generated scenarios. 
Step 2: Compute KD Matrix: Compute the cost matrix for 

each pair of scenarios and determine the KD matrix 
by multiplication of scenario probabilities. 

Step 3: Scenario Selection: Determine the scenario with 
lowest KD. The lowest KD is obtained for scenarios 
with equal magnitude and probability. 

Step 4: Scenario Elimination: Select the scenario with 
lowest KD, and the scenario having KD closest to it. 
The lowest KD scenario is removed on the basis of 
its relative closeness to the other scenarios and low 
occurrence probability. Its probability is added to 
the probability of nearest identified scenario. This 
ensures that sum of the occurrence probability of all 
the remaining scenarios is always unity. This 
process of scenario reduction gives rise to a new 
probability matrix with the reduced order. 
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III. STOCHASTIC SECURITY CONSTRANED ECONOMIC 
DISPATCH MODEL 

The problem objective is to minimize the expected 
operating cost. The basic scheduling formulation has been 
modified to incorporate inertia and PFR constraints 
requirements [14].  

A. Objective Function 
It considers the cost of each scenario in proportion to its 

probability. The objective function includes no-load cost, 
start-up cost and operating cost of all the generators, along 
with the cost of enabling the governor and lost load cost as 
shown by Eqn. (2). 

min( ge
s i i,t i ,t t i ,t i i ,t,si

t T i I
A .u su LS *VOLL .C K .g )

 

 + + + +       (2) 

    Where, I , T , S , J  and  are the set of generators, time 
interval, scenarios and linear segment of cost curve, 
generator start-up cost and generators without enabled 
governor respectively, while i , t , s , j  are the index of 
generators, time intervals, scenarios and each generator cost 
curve, start-up cost, respectively. iA  is no-load cost of 
generator i ($), ,i tu is the generator on/off status variable,

,i tsu is the variable for start-up cost of generator i  during 
hour t ($), tLS  is denoting the load shedding variable at 
time interval t (MW), VOLL  is the value of loss load 
($/MW-h), ,i t  is the variable for generator governor 

enabled while ge
ic  is the cost of enabling the governor($),

s is the probability of scenario s , iK  is the generator i  

cost curve ($/MW) and , ,i t sg  is the power output of 
generator i  under scenario s  during hour t . 

B. Generator Operational Constraints 
 The optimization problem is subject to following 

operational constraints.  

 , , , 1, , ,i t i t i t t iy z x x t T i I−− = −   
         (3) 

 , , 1, ,i t i ty z t T i I+                            (4) 

Constraint (3) determines the generator start-up or 
shutdown status at the time t , based on its 0/1 status 
between hours 1t −  and t . ,i ty  is the generator start-up 
status and ,i tz is the generator shut down status.  Constraint 
(4) restricts the generator to start up and shut down within 
the same time interval.   

 
, , , , ,i t j i t

j J
q y t T i I



=   
         (5) 

 
, , , ,. , ,i t i j i t j

j J
su SUC q t T i I



=   
        (6)     

Constraint (5) & (6) determines the exact points of the 
start-up curve at which generator has not been in service. 
The start-up cost of each generator depends on the service 
hours. Here , ,i t jq is the generator start-up cost identification 

matrix and ,i jSUC is the cost of segment j .

 , , , ,. . , , ,ii t i t n i tiG x g G x t T i I n N          (1) 

 , , , 1, , ,ii t n i t niR g g R t T i I−−  −              (2) 

Power output of individual generators is taken as the 
sum of the output on each part of its cost curve, as defined 
by constraint (7). Here, iG and iG  denotes maximum and 
minimum power output of the generator. Constraint (8) sets 
the up and down ramp limits for each scenario, iR  and iR  
are ramp up and ramp down limit of generator. 

C. Transmission Constraints 
 

 
i,t,s w,t ,s w,t ,s sm n,t ,s

i n w n n,m L

t ,n

g (W c ) B ( )

D , t T ,s S ,n N


  

+ − −

=    

  
      (9)

 
, ,s , ,s0 , , ,w t w tc W t T w W s S                           (10)

                                          

 

, , , ,s( ) ,

, , ,
nm nm m t s n t nmL B L

t T n m L s S

 −  − 

   
                      (11)

                                           
, , ,, , \n t s reft T n N n s S  −              (12)

                                 
, 0,

refn t t T =                                       (13)   

Where,                                                            

nmB   Line admittance between n and m (S). 

,ntD   Bus n load in time interval t (MW). 

n, ,st   Voltage angle at bus n , time interval t , scenario s
(radian). 

, ,sw tc   Wind farm w  power curtailment, time interval t , 
scenario s , (MW). 

nmL   Lines n and m  capacity (MW). 
Power balance equation at each node is given by Eqn. 

(9). Eqn. (10) defines limits of wind power loss at each 
wind generator. If the line flow limits mentioned in Eqn. 
(11) could not be a specific value of wind power available 
at the wind farm w , the wind power is curtailed by , ,t w sc . 
Voltage angle limits are set by Eqn. (12), which is set to 0 
for reference bus in (13). 

D. PFR and System Inertia Constraints 
PFR constraints aims to control the initial deviation of 

frequency within prescribed limit, following a maximum 
infeed loss. Constraint (14) ensures that enough inertial 
response should be available so that the maximum RoCoF 
does not trigger protective relays like UFLS relay or cause 
instability. Here iH  is the inertia constant of generator i , 

loadH  is equivalent load inertia (s), reqH  is the required 
inertia (s). Constraint (15) ensures PFR adequacy, 

,i t
Pf  is 

the variable for total PFR availability (MW), CP  is the 
constant for PFR capacity requirement (MW),   is the load 

damping rate (1/Hz) and maxf  is the maximum frequency 
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deviation (Hz). Constraint (16) generates the equivalent 
droop curve dreR , represented as Hz/MW. Eqn. (17) ensure 
that adequate headroom is available with enabling of 
governor for providing PFR and maintaining the droop 
curve relationship. Constraint (18) requires the generator to 
be online when its governor is enabled. Constraint (19) 
disables the generators by assigning  u  equal to 0, which 
are working in the mode that couldn’t provide PFR, while 
constraint (20) sets   equal to 0 for the generators having 
large governor dead-band. 

 , ,* * *load req ins
i t i t t

i I
u H G H D H R t Tn



+  −       (14) 

,

max

, ,
0

* * ,
i t

C d ins
t b t

i I

fPf P P R t T
f





 − −         (15) 

 
0*

,
drc

dre i
i

i

R f
R i I

G
=  

        (16)

 
,

, max( ), ,
i t

i t db
idre

i
Pf f G i I t T

R


  −     (17)   

,

, max
,( ) (1 ), ,

i t

i t db
ii i tdre

i
Pf f G G i I t T

R


  − − −      (18) 

 , , ,i t i tu i I t T               (19) 

 , 0 ,ng
i t i G t T =             (20) 

Eqn. (21) and (22) checks the requirements of PFR and 
ensures that adequate PFR is available at nadir time, nadirt
and intermediate steady-state time, sst . 

 ss Css
i,t i ,ti I

Pf P P t T


 −                       (21) 

 reqnadirnadir Cnadir
i,t i ,t

i I
P P P t T



 −          (22) 

IV. WIND POWER SCENARIOS 
Table 1 gives the reduced wind power scenario with 

corresponding probabilities and KDs for eleventh hour. This 
table shows that Scenario 3 has the lowest KD and would be 
selected for elimination in the next iteration. Scenario 9 is 
closest to the selected scenario. The new probability of 
Scenario 8 would be the sum of its previous probability and 
probability of Scenario 3. Wind speed historical time series 
data for the duration 01.01.2016 to 31.12.2016 is used, 
online available from Illinois Institute of Rural Affair, USA 
[15]. Wind power uncertainty is modelled in proposed 
model by considering 1000 wind power scenario 
generations. After scenario generation, backward reduction 
algorithm is utilized to obtain 10 representative scenarios. It 
is observed that both generated and reduced scenarios vary 
around their mean value, with 95% confidence interval. 
Reduced wind power scenarios are used in proposed 
stochastic model for modeling wind power uncertainty.   

 
 

TABLE I   REDUCED WIND POWER SCENARIOS, 
PROBABILITIES AND KD OF ELEVENTH HOUR 

Scenario 
Index 

Wind Power 
(kW) Probability KD 

1 1273 0.001 133.665 
2 1273 0.001 133.665 

3 77 0.001 8.085 

4 353 0.001 37.065 

5 77 0.001 8.085 

6 1273 0.415 133.665 

7 353 0.213 37.065 

8 886 0.001 93.03 

9 77 0.281 8.085 

10 886 0.085 93.03 
 

V. CASE STUDY 
Test system used to implement the stochastic security 

constrained economic dispatch model is considered from 
[16]. In the test system, there are 24 buses, including 17 
load buses and 32 generators. The generating units include 
eleven oil/steam turbine units, nine coal/steam turbine units, 
six hydro turbine units, four oil/combustion units and two 
nuclear units. The total installed capacity of generators in 
one area is 3405 MW with peak load 2850 MW. The data is 
modified to include 1000 MW generation from wind plant. 
The penetration level is varied in 10 to 30% range. Nominal 
frequency (=50 Hz), governor droop (= 5%), frequency 
dead band (=15 mHz), load damping rate (=1%/Hz), 
RoCoF of 0.5 Hz/s and delivery time (=10 s) are chosen 
according to National Grid standards [17]. The largest 
generators in the system are two nuclear units of 400 MW, 
and infeed loss of one of the unit is considered. PFR 
capacity of system should limit frequency above minimum 
value of 49.2 Hz. The maximum   requirement is assumed 
to be 30% of the total responsive capacity and for all the 
governors should at least be greater than 100 mHz.  is 
assumed to be 10000 $/MW-h.  

A. PFR Analysis  
This section details the performance of PFR parameter, 

considering largest generation outage. The response 
provided by each unit is shown in Fig. 1.  

 
Fig. 2. PFR availability and requirement with frequency deviation. 
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As the system inertia and PFR capacity reduces 
frequency deviation increases and frequency reaches the 
nadir value in lesser nadir time.  Hence additional PFR is 
required to maintain the frequency to the prescribed network 
limits.  

B. Cost Performance 
With increasing wind penetration, operation cost 

reduces. Increasing wind penetration reduces the average 
number of conventional units committed online per hour. 

 

Fig. 3. Operation cost and PFR cost with varying wind penetration. 

It could be observed from Fig. 3, there is marginal 
increment in PFR cost. PFR constraints add only about 0.3% 
to total operation cost. This marginal increment in PFR cost 
is because of system’s inertia and PFR adequacy. 
Synchronous inertial cost is considered zero for scheduling 
horizon, as system has sufficient inertial response and PFR. 
Fig. 4 shows the variation of operation cost with change in 
ROCOF and frequency deviation. It could be observed that 
operation cost is increasing with the fast ROCOF. Similarly 
increase in frequency deviation value results in increased 
operation cost. 

 
Fig. 4. Operation cost with variation in ROCOF and frequency 

deviation. 

VI. CONCLUSION 
This paper presents a computational framework to assess 

PFR adequacy in stochastic security constrained economic 
dispatch model. In this work ROCOF and frequency nadir 
are control variables to assess systems PFR adequacy under 
uncertain wind generation. ARIMA model is used for the 
scenario generation of wind power time series, backward 
reduction algorithm is used to reduce these scenarios to 
obtain the representative scenarios required in SUC model 
for the wind power uncertainty modelling. Case studies are 

performed to assess the PFR availability and requirement 
with analysis of cost performance. Numerical results show 
that with increased wind uncertainty in the system PFR 
requirement would be higher and this would incur higher 
cost to maintain system frequency stability. Proposed model 
could be enhanced by incorporation of PFR pricing and real 
time procurement of PFR with variation in system inertia 
condition. 
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