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Abstract—Wind power plants (WPP) are intermittent source of
energy unlike conventional power plants, it is difficult to firmly
dispatches them. Modern grid codes requires the wind power
plants to be dispatched like traditional power plants, for this
reason wind farm operator have to rely on prediction for short
term wind power to schedule wind farm. Wind farm operators
submit the bids in day ahead market based on forecasted wind
power while updated wind forecast is used for hedging the bids
in the electrical market. Any deviation of the actual wind power
generation from the schedule wind generation is either adjusted
by purchasing /selling energy in real time market, otherwise
wind farm operators have to pay deviation cost as penalty.
Hereby, the accuracy of the prediction system has economical
and technical impact on the operation of grid with high RES
penetration. In this proposed paper, comparison of three well
known prediction methods like Persistence, ARIMA, Markov
chain is made by evaluating the statistical metrics like mean
absolute error (MAE) and root mean square error (RMSE).
A well-established operating strategy min-max method is used
to control the operation of the BESS connected to the wind
farm. The impact of accuracy of the different method of wind
forecasting on the reliability of the system is studied in this paper
by evaluating reliability indices like energy served (ES), energy
not served (ENS) and energy not utilised (ENU).

I. INTRODUCTION

The stochastic nature of wind power makes it difficult to
operate WPP like conventional power plant. Large scale grid
integration of the RES has a great impact on real time grid
operation, ancillary service requirement, power quality, up-
gradation of transmission network, competitive market design,
reliability and security of the grid, reduction of green house
gases and other environmental benefits [1], [2]. An accurate
wind prediction is required over a wide range from seconds
to days to be used for primary frequency regulation, reactive
power support, power oscillation damping service [3].

From the literature it is seen that wind speed forecasting can
be (1) weather-based (2) time-series-based [4]. The weather
based method uses hydrodynamic atmospheric model which
assimilates physical phenomena like frictional, thermal and
conventional effects [5], [6]. The time series based prediction
method uses data available from site to build the statistical
model to be used for forecasting [7]–[9]. There are several
time series based methods to predict wind speeds for example:
Persistence, ARIMA and Markov chain methods [8], [10],
[11]. These are methods are usually compared with respect to
performance by evaluating statistical metrics like root mean
square error, mean absolute error [12], [13] . The literature

survey indicates for short term wind forecast second order
Markov model is more accurate than Persistence and ARMA
models [12]. It is observed from literature survey various
methods and their comparison has been made but the impact
of the different forecasting model on the reliability of the wind
farm in meeting the schedule dispatches has not been studied.
Through this paper we want to address the gaps identified in
the literature survey and hereby study the impact of accuracy
of the wind forecast on the BESS size and the reliability of
wind farm.

The operating strategy, also referred to as control strategy,
of the storage, is usually defined to manage the BESS energy
and lifetime. BESS is also used as energy buffer to mitigate
the intermittent behaviour of RES and also to meet the
schedule dispatches of RES. The minute-by-minute, model
predictive control (MPC), min-max, pre-compensation, post
compensation method as discussed in [14]–[17].

The minute-by-minute BESS operating strategy is used to
benchmark performance of other operating strategies [14],
[15]. In this strategy, BESS does not operates when the error
between the forecast wind power and actual wind power is
less than 2% and when error exceed 2%, BESS discharges or
charges to reduce the error. The statistic like RMSE and MAE
obtained for minute-by-minute method are better than moving
horizon predictive control method as reported in [14]. The size
of the storage obtained for pre-compensation method and post-
compensation method is smaller than for minute-by-minute
method [15]. The operating strategy presented in [14], [15],
authors have reported BESS life reduction due to incomplete
charging and discharging cycles.

The objective of the paper is to compare various forecasting
methods with respect to their impact on the reliability indices.
Thus, based on the literature survey, persistence, ARIMA and
Markov chain methods are identified as candidate methods
for evaluation. The dependence of reliability indices on the
operating strategy is important and thus, min-max method
is selected to ensure maximum BESS lifetimes. The outline
of the paper is as follows: different forecasting methods
are briefly summarized in Section II, the accuracy of the
forecasting model is determined by finding forecasting errors
as discussed in Section III, the operating strategy is presented
in Section IV, system description is presented in Section V
and obtained results are presented in Section VI. Finally, major
conclusions are presented in Section VII.
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II. WIND FORECASTING METHODS

A. Persistence Method

The persistence method is a classical method which is used
as a benchmark for performance evaluation of forecasting
methods. The method assumes a quasi-stationary model of the
atmosphere [18], hence, the wind speed in the next interval is
predicted to be equal to the measured value in the present
interval as given by (1). Due to this the method is also termed
as the naive method. The persistence method is known to
have good accuracy for very short intervals of prediction i.e.
ranging from few seconds to 30 minutes ahead and also for
short intervals ranging from 30 minutes to 6 hours ahead [1].

V̂ (t+ 1|t) = Vt (1)

B. ARIMA Method

The autoregressive integrated moving average (ARIMA)
model is a class of stochastic processes used for time series
analysis and forecasting [19]. ARIMA (p,d,q) model has three
parameters, where p gives the order of the autoregressive(AR)
part, d gives number of times first differencing involved to
make time series stationary and q gives the order of the
moving average(MA) part. The stationarity of time series is
established by considering the ACF and PACF plots. If the
ACF is exponentially decaying and PACF is significant till p
lags for the stationary time series, then it is ARIMA(p,0,0)
or AR(p) as model as given by (2). If ACF is significant till
p lags and PACF decays with the increase in lag, then it is
a ARIMA(0,0,q) or MA(q) model given by (3). For mixed
ARIMA(p,0,q) or ARMA(p,q) model given by (4) both ACF
and PACF decays with the increase in lag.

V̂t = Φ1Vt−1 + · · ·+ ΦpVt−p + εt (2)

where Vt−1, Vt−2, . . . Vt−p in (2) are wind speed in previous
intervals and Φ1,Φ2, . . .Φp are AR parameters which can be
obtain from Yule-Walker equation [19].

V̂t = εt − θ1εt−1 − · · · − θqεt−q (3)

In (3), εt, εt−1, . . . εt−q are independent and identically dis-
tributed (iid) white noise.

V̂t = Φ1Vt−2 + · · ·+ΦpVt−p+εt−θ1εt−1−· · ·−θqεt−q (4)

The MA parameters θ1, θ2, . . . θq in (3) and (4) are obtained
using the invertibility condition [19].

In order to forecast the wind speeds based on AR(p) model
Weiner-Kolomogrov prediction formula is used and is given
by (5). The formula requires the mean wind speed value in
addition to the AR parameters.

V̂ (t+ k|t) = µ+ Φ1(V (t)− µ) + Φ2(V (t− 1)− µ)

+ ....+ Φp(V (t− p+ 1)− µ)
(5)

C. Markov Chain Method

Another method used in the study of stochastic processes
is the Markov Chain Method [8], [20]–[22]. This method
relies on enumerating states that a variable or system can
take and defines probability of transition from one state to
another [8]. The transition probabilities may be calculated or
estimated empirically [8], [20]–[22]. Since it is possible to
segregate the wind speed values into definite number of states
and probabilities of transition from one state to other can be
estimated, Markov Chain method has been used for generation
and forecasting wind speeds [8], [20]–[22].

In order to establish the Markov Chain model for wind
speeds, the wind speed time series is divided into different
states. These states are given as µ ± σ, µ, µ ± 2σ, µ + ±3σ
where µ is mean wind speed and σ is standard deviation of
the wind speed. These values are obtained from the measured
wind speed data. It is well reported in [8], higher discretization
leads to better representation of the process but introduces a
large number of parameters that are difficult to assess from
the data .

The Markov Chain Method requires probability of transition
from one state to the other. This is defined as a conditional
probability of transitioning to a new state given the probability
of being in the present state. For this purpose, if we consider
Xt to be a stochastic process, having i = 1, 2, 3 . . . k discrete
states, corresponding to a sequence of events at time instances
t1 < t2 < t3 · · · < tk. The conditional probability p of the
process Xtn being in ithn state at time tn can be given by (6).
The probability is seen to depend on the history of the states
the process follows [8], [20]–[22].

p = Pr {Xtn = in|Xt1 = i1, Xt2 = i2, ..., Xtn−1 = in−1}
(6)

1) First order Markov chain(FOM): If, the conditional
probability of transition in a Markov process depends only on
the present state and no other past states, then the process is
termed as FOM. This is given by the (7) where probability of
transitioning to (i+1)th state only depends on the ith state [8],
[20]–[22]. For a n state process, the conditional probabilities
for transition can be represented in matrix form given by (8).
The elements of the matrix represent probability of transition
from ith to jth state at any instant of time [8], [20]–[22].
According to the FOM the probability of the stochastic process
Xtn at instant tn to be in state in if it was in state in−1 in
the previous state as given in (7). It seen from (7), state of
the process does not depend on the process history but only
depends on the previous state of the system.

p = Pr {Xtn = in|Xtn−1 = in−1} (7)

P =


p11 p12 .. .. p1n
p21 p22 .. .. p2n

: : : : :
: : : : :

pn1 pn2 .. .. pnn

 (8)

In the context of wind speed forecasting, the transition proba-
bilities can be obtained using maximum likelihood method as
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given by (9) [8], [20]. The value of nij is equal to number of
transitions taking place from ith to jth state.

pij =
nij∑
j nij

∀i, j ;
∑
j

pij = 1 ∀i (9)

2) Second order Markov (SOM): Higher order Markov
chains are created to have multiple time step memory [23].
Higher order Markov chain can very efficiently predict wind
speed using additional memory they have regarding the wind
data, which can be regarded as if features of the training
models have been enhanced. Like SOM and higher order
Markov chain uses more than one previous state in modelling
the Markov chain. In a SOM process, the probability of the
process to be in state ith at time t depends on system states
at t1 and t2 time instants, as given by (10) [8]. Based on
the Chapman-Kolomogrov equation, the transition matrix for
SOM can be easily obtain by squaring the FOM transition
matrix [8], [24]. The second order model allows to improve
the forecast performance by reducing the prediction error as
reported in [8], [20]

p = Pr {Xtn) = in|Xtn−1 = in−1, Xtn−2 = in−2} (10)

The wind speed may be forecasted either by using FOM
or SOM. The cumulative transition matrix for this is obtained
from transition matrix (8). To forecast the wind speed a initial
state is randomly chosen, then a uniform random number lying
between zero and one is generated. The next state is found
when the random number is greater than cumulative value of
previous state and less than equal to cumulative value of next
state. The wind predicted speed state has to be converted back
into actual wind speed using the relationship given in (11)
[20].

V = Vl + Zi(Vl − Vu) (11)

In (11), Vl and Vu are the lower and upper boundary of the
state and Zi is the uniform random number lying between zero
and one [20].

III. FORECASTING ERROR

The prediction models discussed in Section II are imple-
mented and used on the measured wind speed data. The devel-
oped wind speed forecasting models are checked for correct-
ness and their performance. For this purpose, the available data
is divided into training and testing data. The training data is
used to determine the model of each of the forecasting method.
The predicted data is then compared with the measured data to
determine the performance of the prediction method. In order
to evaluate performance, the factors like prediction error, mean
absolute error (MAE) and root mean square error (RMSE) are
calculated.

A. Prediction error

Prediction error are obtained as a difference between the
measured and predicted value at time t + k as given in (12),
where V (t+ k) is actual wind speed at time t+ k and V̂ (t+
k|t) is wind speed predicted at time t for instant t + k. This

results in generation of time series of errors which is used for
determination of MAE and RMSE.

e(t+ k|t) = V (t+ k)− V̂ (t+ k|t) (12)

1) Mean absolute error : The MAE, also known as the first
moment, is calculated from the prediction error time series
obtained from (12) by using (13) and it represents the average
error of the forecasting model.

MAE =
1

N

N∑
t=1

|e(t+ k|t)| (13)

2) Root mean square error: The RMSE, also known as the
second moment, is calculated from the prediction error time
series by using (14) and (15). Since, it is the second moment,
the RMSE depends on the variance of the prediction error.

MSE =
1

N

N∑
t=1

(
e2 (t+ k|t)

)
(14)

RMSE =
√

MSE (15)

It may be observed that unlike MAE, RMSE is the weighted
average of the error and gives more weightage to large errors.
Hence if there is large difference between the predicted and
the actual wind speed RMSE is expected to be larger than
MAE.

IV. OPERATING METHOD

A. Power and Energy Rating of BESS

Generally, the size of a battery energy storage (BESS) is
done to overcome the highest power deficit. The power deficit
of a wind farm at any time t can be given by (16). The power
Psch gives the value of schedule wind power based on the
forecasting methods, whereas Pw represents measured power
being produced by the wind farm at time t. Thus the error in
the schedule and prediction wind power has to be overcome
by BESS.

P errorSch (t) = Psch(t)− Pw(t) (16)

The capacity of the BESS capacity, usually given by energy
and power rating, should be adequate to overcome the largest
prediction error given by (17). The energy rating of the BESS
needs to consider the duration for which it is to be operated.
In this paper duration is assumed to be one hour leading to
ratio of energy to power capacity being equal to one.

Prating = max[|P errorSch |] (17)

B. Operating Method

The operating strategy plays a significant role in the BESS
life management and is also expected to impact the reliability
characteristics. With this view point, the min-max operating
strategy is adopted in the paper. The min-max strategy uses
short term wind power forecast time series to determine
the dispatch power value. When the BESS is discharging,
dispatched power is the maximum value of wind power in that
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dispatched interval. While when BESS is charging, dispatch
power is minimum wind power of that dispatch interval.

Since, the operating method depends on accuracy of forecast
and the accuracy of the forecast depends on the time horizon
of the forecast. Shorter the prediction horizon more accurate
would be forecast as reported in [25]. Error between the actual
wind speed and the forecasted wind speed can be quantified in
terms statistical parameters such as mean of wind speed error
µv and the standard deviation σv of wind speed error. Thus, the
maximum, central and minimum forecast values are obtained
with 99.7% confidence intervals. This implies three standard
deviations from the mean being considered for definition of
maximum, minimum and central forecast values.

Td1 Td2 Td3

W
in

d 
po

w
er

Time

Central
Forecast

Lower
Forecast

Dispatch
power

Upper
forecast

Charging

Discharging

Fig. 1: Dispatched power for min-max operating strategy

The three standard deviations from the mean being con-
sidered for definition of maximum, minimum and central
forecast values can be obtain as V̂ (t) +µv + 3σv , V̂ (t) +µv
andV̂ (t) + µv − 3σv respectively [16], [17]. Wind power
corresponding to upper, central and lower wind power forecast
range Puw , P cw and P lw respectively can either be calculated
using speed-power characteristic of wind turbine and using
V̂ (t) +µv + 3σv , V̂ (t) +µv andV̂ (t) +µv−3σv respectively
or are determined as ˆPSch(t) + µP + 3σP , ˆPSch(t) + µP
and ˆPSch(t) + µP − 3σP respectively, where µP and σP are
mean and standard deviation of schedule power error. While
determining lower wind power forecast, if it assumes negative
value as a result of statistical calculation, these negative value
should be set to zero. Similarly if upper wind forecasted power
takes value greater than wind turbine installed rating should,
its value should be set to wind turbine installed rating.

To implement min-max operating strategy considering the
given forecast wind power confidence interval, when BESS
is discharging, Pd is fixed at the maximum value of Puw
during dispatch interval and when BESS is charging Pd is
fixed at minimum value of P lw during dispatch interval as
shown in Fig. 1. Thus, the confidence interval effects the BESS
operation and if confidence interval is increased it leads to
frequent BESS operation and eventual reduction in the lifetime
of BESS.

C. Operating Constraints

In order to determine charging and discharging of the BESS
thePuw , P cw and P lw are used. For a BESS, state of charge
(SOC) constraints SOCmin and SOCmax are specified to

0.2 and 0.9 respectively. The power exchanged by the BESS
depends on the SOC constraints as given by (19). In (19) ∆t
is dispatched interval, η is round trip efficiency of BESS taken
as 80% and Er rated energy capacity of BESS.

Pbt = P cw − Pd(t) (18)

Pb(t) =



P (t), SOC(t+ 1) ≥ SOCmin
SOCmin−SOC(t)

η∆tEr
, SOC(t+ 1) < Smin

P (t), SOC(t+ 1) ≤ SOCmax
SOCmax−SOC(t)

η∆tEr
, SOC(t+ 1) > SOCmax

−Pbrated, P b(t) < −P ratedb ;SOC(t) 6= SOCmin

Pbrated, P b(t) > P ratedb ;SOC(t) 6= SOCmax

(19)
In (19), first and third constraint describes power delivered by
BESS to grid when state of charge constrain are not violated.
Second and fourth constraints gives the power delivered by
BESS when state of charge constraint are violated. Fifth and
sixth constraints in (19) describes the input or output of BESS
can not exceed the power rating P ratedb of converter. The state
of charge of BESS at the start of the next interval depends on
the state of charge at the beginning of the previous interval
and the power supplied/sinked by BESS during the previous
interval as given in (20).

SOC(t+1) = SOC(t) +
ηPb(t)∆t

Er
(20)

D. Reliability indices

In order to determine the effect of the wind forecast accu-
racy, reliability indices energy served (ES), energy not served
(ENS) and energy not utilised (ENU) for each dispatched
interval is calculated. The ES is equal to energy supplied by
the wind farm and BESS in a dispatch interval when BESS is
discharging and when the BESS is charging energy served is
equal to dispatched energy as given in (21).

ES(t) =

{
(P cw(t)− Pb(t))∆t, Discharging

Pd(t)∆t, Charging
(21)

ENS(t) =

{
Pd(t)∆t− ES(t), Discharging

0, Charging
(22)

The ENS in a dispatched interval can be obtain from (22),
when the BESS is discharging ENS during a dispatch interval
is difference of energy dispatched and energy served otherwise
it is zero. The ENU given by (23), when BESS is discharging
ENU is zero otherwise it is equal to difference of wind energy
generated and energy dispatched and supplied by BESS.

ENU(t) =

{
0, Discharging

(P cw(t)− Pd(t)− Pb(t)∆t, Charging
(23)

The expected energy served (EES), expected energy not served
(EENS) and expected energy not utilised (EENU) can be
obtain from (21), (22) and (23) by taking mean of ES, ENS
and ENU over simulation horizon respectively.
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V. SYSTEM DESCRIPTION

The aggregated model of the wind farm is considered,
where 150 wind turbines of 2 MW rating are represented by
equivalent wind turbine with the rated power output Pr of
300 MW. The wind farm in feed wind energy into the grid.
A centralized storage is connected at the point of common
coupling through voltage source converter to absorb the wind
variability.

In this paper we have consider three test case:-in first
case we have used persistence method to make day ahead
wind forecast, min-max method is used to manage BESS, the
performance of the forecast method is evaluated by obtaining
reliability indices . In the second and third test case we have
used SOM and AR(2) for making day ahead wind forecast
and again the reliability indices are evaluated when min-max
method is used for operating BESS.

VI. RESULTS

A. Wind Forecast

1) Persistence Model: The actual wind speed is time series
data recorded at a site has been used for forecasting. From Fig.
3a it is observed the wind speed forecasted using persistence
model plot is similar to the actual wind speed.

2) Markov Model: The Markov model for wind forecast
has been discussed in detail in section II-C. The wind speed
time series is divided into six classes and the probability of
transition from one class to the other class is used to obtain
transition probability matrix p as given by (24).

P =


0.8669 0.1269 0.0050 0.0012
0.0584 0.8510 0.0828 0.0078
0.0023 0.1874 0.6511 0.1593

0 0.0070 0.1441 0.8489

 (24)

The cumulative transition matrix is obtain from (24) by per-
forming cumulative summing within each row. In cumulative
transition matrix each row end with one as given by (25).

Pcum =


0.8669 0.9938 0.9988 1
0.0584 0.9094 0.9922 1
0.0023 0.1897 0.8407 1

0 0.0070 0.1511 1

 (25)

As we have discussed in section II-C2 that higher order
Markov chain are more efficient in predicting wind speed
accurately so we have develop SOM model for the wind speed
prediction. The transition matrix for SOM model is obtained
using Chapman- Kolmogorov equation as (26) from (24).

P 2 =


0.7590 0.2189 0.0182 0.0039
0.1005 0.7472 0.1258 0.0265
0.0145 0.2828 0.4624 0.2403
0.0007 0.0388 0.2168 0.7437

 (26)

Cumulative transition matrix for SOM is given as (27).

Pcum =


0.7590 0.9778 0.9961 1
0.0584 0.8477 0.9735 1
0.0145 0.2973 0.7597 1
0.0007 0.0396 0.2563 1

 (27)
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Fig. 2: ACF and PACF
Wind speed forecasting based on FOM and SOM can

be obtain using (25), (27) and (11). Since the wind speed
forecasting is done by predicting the next state of the wind
speed randomly hence every time algorithm is run, forecasted
wind speeds are different. Wind speed forecasted for 24 hours
using FOM and SOM is shown in Fig. 3b.

3) ARMIA Model: To determine the best fit ARIMA model,
ACF and PCF are plotted as shown in Fig. 2a and Fig. 2b.
It is observed from Fig. 2a, ACF is exponentially decaying
which implies ARIMA(p,0,0) or AR(p) model. To determine
number of AR terms to be considered, it is observed from Fig.
2b, PACF is significant till 3 lags only. Hence it is AR(3) or
ARIMA(3,0,0) model. In this paper a lower and higher model
of AR(3) have also been considered i.e AR(2) and AR(4).
The forecasted wind speeds for AR(2), AR(3) and AR(4) are
shown in Fig. 3c.
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Fig. 3: Forecast models
The mean speed obtained for the actual wind speed and for

different forecast model are plotted in Fig. 4. It is observed
from Fig. 4, mean wind speed obtained for persistence model
is 3.77 m/s which is very close to actual wind speed 3.76 m/s,
while mean speed for SOM is 3.69 m/s, slightly lower than
actual wind speed. The mean wind speed for AR(2), AR(3)
and AR(4) models are 4.37, 4.34 and 4.31 m/s, which are
higher than the actual wind speed.
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Fig. 4: Mean wind speed for different forecast models
The validation of the models is done by evaluating MAE

2nd Int'l Conference on Large-Scale Grid Integration of Renewable Energy in India| New Delhi, India | 4-6 Sep 2019



and RMSE, it is observed from Fig. 5, RMSE is usually higher
than MAE for persistence and for all AR models. It is also
observed from Fig. 5, persistence forecast model performance
is better than AR forecast model.

From Fig. 5, it is observed MAE and RMSE are equal for
FOM and SOM. It is also observed from Fig. 3b, SOM gives
better error statistics than FOM. Henceforth we have adopted
SOM for wind forecasting in this paper. The performance of
SOM is found to better than AR and persistence models as
shown in Fig. 5. Similar result were reported in [12], where
the performance of Persistence model, second order Markov
model, ARMA model and Weibull model were compared and
it was reported that SOM performance is best for short term
wind forecast followed by ARMA and Persistence.

It is observed from Fig. 5, MAE evaluated for AR(2),
AR(3) and AR(4) are 5.9, 6.1 and 5.9 respectively while
RMSE values calculated for AR(2), AR(3) and AR(4) are
6.9, 7.1 and 6.8 respectively. It is also observed from Fig.
5, AR(2) and AR(4) not only give comparable error statistics
but also are better than AR(3) model. According to Parsimony
principle, when the validation statistic of two different model
are comparable it is preferable to use lower order model as
the complexity increase with the use of higher order model
[26]. Hence in this paper we have adopted simpler lower order
AR(2) model for wind forecasting.
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Fig. 5: Error statistics
The error forecast series for persistence, SOM and AR(2)

model is obtained using (12) and normalised with respect to
actual wind speed to obtain absolute normalised wind speed
error series plotted on logarithm scale as shown in Fig. 6. It is
observed from Fig. 6 the normalised wind speed error can be
1.9 times the actual wind speed for persistence method. For
SOM, the normalised error can become 13.8 times larger than
actual wind speed. For AR(2) forecasting model, normalised
error can be 12.2 times larger than actual wind speed. These
error are significant and will effect the real time performance
of the BESS operation.

B. Impact of different forecasting method

The impact of the forecasting method accuracy on the
system operation can be studied by using three different
forecasted wind speed data for a day namely Naive, SOM
and ARIMA(2,0,0). The dispatched interval is considered of
15 minutes. The impact of the accuracy of forecasting model
on the system performance is studied by evaluating per unit
values of reliability indices like EES, EENS and EENU. The
impact of wind forecasting model on the rating of the BESS
and on the number of charge /discharge cycle BESS undergoes
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Fig. 7: The performance of min-max operating strategy for 15 min
dispatch interval

in a day is also presented in this section. It is assumed at the
beginning of the simulation, BESS is fully charged and SOC
is maintained at maximum limit. As the BESS is fully charged
it would discharge during first dispatch interval.

The performance of the system determined when the actual
wind speed data is used, BESS energy capacity is assumed to
be 0.3595 pu. Reliability indices ES, ENS and ENU obtained
for each dispatched interval for the actual wind speed are
shown in Fig. 7b. ENS is zero for all dispatched interval except
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for (t = 98, 502, 677, 869), when the BESS at reached it lower
SOC limit and can not be discharged further. Similarly ENU is
zero for all dispatch interval except (t = 399, 577, 793, 1367)
when BESS has reached it upper SOC limit and can not be
charged. ENS attains maximum value of 0.1743 pu at t = 869,
while ENU attains maximum value 0.1173 pu at t = 577.
From Fig. 7c it is seen that the SOC is maintained within and
set limit and BESS undergoes complete charging/discharging
cycle. SOC is observed to be constant (e.g t= 177-189, 205-
227, 889-1048, 1089-1176) , since in these intervals the power
sink or source from the BESS is very small that SOC is
constant.

The wind speed forecasted using persistence model is
the actual wind speed shifted by some time step, per unit
dispatched power, lower and upper forecast wind power for
the actual wind speed and persistence model are similar as
shown in Fig. 7a and Fig. 7d. It is observed from Fig. 7d
when the BESS is discharging, Pd equal to minimum value
of P lw in the dispatch interval and Pd is zero for the intervals,
if P lw is zero in that interval. When the BESS is charging,
Pd is equal to the maximum value of Puw . On comparing Fig.
7e and Fig. 7d it is observed that ES plot is similar to Pd
plot and ES is zero for the intervals for which Pd is zero.
ENS is zero at all t except at t = 100, 467, 654, 862, 1486,
when BESS has hit its lower SOC limit as seen from Fig.
7e and Fig. 7f. Similarly ENU is zero for all t except at
t = 367, 556, 785, 1299, when BESS has reached its upper
SOC limit. Maximum value ENS and ENU attains during
the day is 0.2279 pu and 0.2973 pu respectively. SOC is
maintained between the set limits SOCmin − SOCmax and
BESS undergoes complete charging/discharging cycles using
min-max operating strategy as shown in Fig. 7f. It is also
observed SOC is constant in the intervals (e.g. t=180-199, 215-
238, 906-1060, 1064-1088,1100-1189)as the power source or
sink by the BESS is constant, Pd = 0 and P cw is constant
and negligible so during these intervals SOC remain almost
constant.

The per unit values of dispatch power, lower and upper
forecast power using SOM forecasted wind data are shown
in Fig. 7g. It is observed from Fig. 7g, P lw is zero for all
interval except for interval t = 795− 818. On comparing Fig.
7g and Fig. 7h, it is observed ES plot is similar to Pd and ES
is zero when Pd = 0. It is also observed from Fig. 7h and
Fig. 7i, ENS is negligible for all t except at t = 77, 702, 988
as the SOC of BESS has reached its lower limit and can not
discharge to meet the demand. ENU is zero for all t except
at t = 627, 914, 1379 when the SOC of BESS has reached its
upper limit and can not charge further, surplus wind energy has
to be spilled as observed from 7h and Fig. 7i. The maximum
value ENS and ENUS attains during the day is 0.4161 and
0.1731 pu respectively. SOC is maintained between the set
limits SOCmin − SOCmax and BESS undergoes complete
charging/discharging cycles using min-max operating strategy
as shown in Fig. 7i. It is also observed SOC is constant in the
certain intervals as the power source or sink by the BESS is
constant, Pd = 0 and P cw is constant and negligible so during
these intervals SOC remain almost constant.

Dispatch power, lower and upper forecast power for the
wind speed forecast using ARIMA(2,0,0) model is shown
in Fig. 7j. P lw is zero through out the day, when BESS is
charging Pd = min(P lw) and when BESS is discharging
Pd = min(Puw) as seen in Fig. 7j. From Fig. 7j and Fig. 7k it
is observed ENS and ENU are zero for all intervals except at
t = 93, 402, 693, 968, 1233 and t = 311, 601, 878, 1141, 1396
respectively as the SOC of BESS has reached its set operating
limits.The maximum ENS and ENU seen during the day is
0.3021 and 0.1274 pu respectively.

C. Impact of different dispatch interval

Impact of dispatched interval of wind farm on the op-
erational performance of system is studied by considering
dispatch interval of 5 min, 15 min and 1 hour. The per
unit values of EES, EENS, EENU, power rating of BESS
and number of BESS cycles in a day has been presented in
Fig. 8 for persistence(Naive), SOM and AR(2)as shown in
Fig. 3c. For the actual wind speed the EES for actual wind
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Fig. 8: The performance of min-max operating strategy using
different forecast models and for different dispatch interval

increases from 0.1041 pu to 0.1107 pu when the dispatch
interval increases from 5 minute to 15 minute but it reduces
to 0.1092 pu when the dispatch interval is increased to an
hour as shown in Fig. 8a. Since persistence model is obtain
by shifting actual wind speed, EES for persistence model is
expected to show similar trends as that of actual wind speed
but EES for persistence model is same 0.1041 pu for 5 min and
one hour dispatch interval and highest value of EES 0.1136
pu is obtained for 15 minute dispatch interval as seen in Fig.
8a. EES for the SOM increases as the dispatched interval is
increased, EES is 0.0996 pu for 5 minute dispatch interval
which is lower than the EES of actual wind and persistence
model for the same length of interval. There is slight increase
in EES from 0.1077 to 0.1107 pu when the dispatch interval is
increased from 15 minute to one hour for SOM model. When
the AR(2) model is used for forecasting, EES shows little
improvement from 0.153 to 0.1541 pu when dispatch interval
is changed from 5 minute to 15 minute as seen from Fig. 8a. It
is also observed from Fig. 8a EES further improves to 0.1552
pu as the dispatch interval is increased from 15 minute to one
hour for the AR(2) model.
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The EENS for the actual wind is largest at 2.6 × 10−4 pu
for 5 minute dispatch interval, it is higher than the EENS
2.6× 10−4 pu for one hour dispatch interval as shown in Fig.
8b. EENS for persistence model has a different trend from the
actual wind, EENS increases from 1.4×10−4 pu to 7.8×10−4

pu as the dispatch interval increases from 5 minute to one hour.
Similar trend is observed for EENS obtain for SOM forecast
model, EENS increases from 3.1× 10−4 pu to 12× 10−4 pu
as the dispatch interval is increased from 5 minute to one hour
as shown in Fig. 8b. For AR(2) model EENS for 5 minute and
15 minute are comparable while EENS is least for one hour
dispatch interval as shown in Fig. 8b.

The EENU increases from 1.09×10−4 pu to 3.71×10−4 pu
and from 1.43×10−4 pu to 6.73×10−4 pu for actual wind and
persistence model when the dispatch interval is changed from
5 minute to one hour respectively as shown in Fig. 8c. For
SOM forecast model, EENU shows reverse trend, it reduces
from 2.32 × 10−4 pu to 1.25 × 10−4 pu as dispatch interval
is increased from 5 minute to an hour as seen from Fig. 8c.
It is also observed from Fig. 8c, EENU at 2.11× 10−4 pu is
comparable for 5 minute and 15 minute dispatch interval for
AR(2) model but it reduces to 1.49 × 10−4 pu for one hour
dispatch interval.

It is observed from Fig. 8e and Fig. 8d power and energy
capacity at 0.3595 pu is lowest for persistence method and at
0.6353 pu largest for SOM. Number of BESS cycles are lowest
for SOM and highest for AR(2) model as shown in Fig. 8f for
5 minute, 15 minute and one hour dispatch interval. Number of
BESS cycles are same for actual wind and persistence model
for 5 minute and 15 minute dispatch interval but for one hour,
BESS cycles are more for persistence model as shown in Fig.
8f.

VII. CONCLUSION

Three different time series based forecasting method are
studied and compared. The impact of the forecasting methods
on the operation of the WPP with the BESS is evaluated by
calculating EES, EENS and EENU. Impact of the forecasting
method on the power rating of the BESS is also presented in
the paper. Second order Markov model gave better statistic
than Naive and ARIMA(2,0,0) but energy served is more
when ARIMA(2,0,0) forecasting model is used, followed by
Naive and Markov model. When SOM model is used for
wind forecasting BESS undergoes least number of cycles but
when AR(2) wind forecasting model is used BESS undergoes
highest number of cycles. BESS energy and power rating is
highest for SOM and least for Naive model.
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