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Abstract—The increasing trend to integrate intermittent 
wind generation in restructured power systems introduces 
several operational issues including reserve management and 
market performance. Therefore, Very Short-Term 
Forecasting (VSTF) of wind speeds is highly emphasized to 
address these issues by accurate prediction of Wind Farms’ 
(WFs) power outputs. State-of-the-art of VSTF typically 
provides a trade-off between machine learning and time series 
techniques. This paper provides an exhaustive study of 
statistical and machine learning VSTF models i.e. Linear 
Regression (LR), Autoregressive Integrated Moving Average 
(ARIMA) k -Nearest Neighbors ( k -NN) and Artificial Neural 
Network (ANN). The performance of these models is 
evaluated by Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). The study is carried out on the dataset 
of WF located at Jaisalmer, Rajasthan, India. The results 
obtained concludes that ANN outperforms for VSTF of wind 
speed because of its ability to form complex non-linear 
systems for forecasting based on simple wind speed data. The 
ANN forecast accuracy is followed by LR, ARIMA and k -NN 
models. 

Index Terms—ARIMA, Artificial Neural Network, 
Forecasting, k -Nearest Neighbors, Linear regression, 
Machine learning, Time series, Wind speed forecasting.  

  

I. INTRODUCTION 
The world is continuously inclining towards the grid 

integration of Renewable Energy (RE) sources to attain 
sustainability. In this regard, government of India has set 
the very ambitious target to install 175GW of RE 
generation capacity by 2022. Wind power is one of the 
most appealing RE sources due to its mature technology, 
high efficiency, and modern infrastructure [1-3]. However, 
due to the stochastic and intermittent nature of wind power, 
its large scale grid integration introduces several challenges 
in the power system operations and planning. Major 
challenges include power and voltage imbalance, 
scheduling and dispatch abilities, harmonics, etc. [2, 4]. All 
these issues create a gap between demand and supply on 
the power grid.  

Maintaining the demand-supply balance is of utmost 
necessity for efficient power system operation [5]. As the 
power output by a WF depends mainly on the variation of 
wind, so any unanticipated change in the WF output may 

enhance the operating cost, reserve requirement and other 
market operation issues [4-7]. Wind Speed Forecasting 
(WSF) is considered as one of the possible solutions to 
mitigate these issues related to better scheduling of wind 
energy [8].  

Present power system works on day-ahead, intraday, 30 
minutes ahead, 15 minutes ahead timelines. So, time 
horizon classifies WSF into VSTF, Short-term Forecasting 
(STF), Medium-term Forecasting (MTF), and Long-term 
Forecasting (LTF). The time-scale of VSTF varies from 
few minutes to 6 hours; for STF the time horizon is up to a 
day; for MTF, the time horizon ranges from a day to a 
week; and LTF time scale can extend to more than a week 
[2]. Out of these, the time scale that suits the context of grid 
operational issues is VSTF [9]. Moreover, adequate and 
versatile forecast methodologies are available for each of 
these prediction horizons.   

Three main classes of WSF techniques have been 
identified from the literature, namely, physical methods, 
statistical methods, and machine learning methods [10-14]. 
Physical or Numerical Weather Prediction (NWP) approach 
uses detailed locale meteorological conditions of the WF. 
Since these methods take a bit longer computation time, 
therefore are not suitable for STF and VSTF scenarios [15]. 
Another forecasting strategy utilizes statistical approach to 
overcome these drawbacks [10]. 

Statistical methods provide relatively inexpensive 
forecasting methods that require only wind resource data. 
These statistical approaches are based on Time Series such 
as white noise, random walk, Autoregressive (AR), Moving 
Average (MA), Autoregressive Moving Average (ARMA), 
and ARIMA models [9]. Time series ARIMA model is a bit 
classical method and is discussed in several literatures for 
different applications [12-13]. ARIMA is a better method 
than the persistence or naive forecasting method that 
forecasts with the concept of ‘the upcoming interval will be 
similar to existing conditions’. Hence, the later models do 
not guarantee for accurate forecasting of power produced 
by wind generators [4]. ARIMA model is suitable for 
VSTF and STF prediction scenarios. It can capture the 
temporal correlations of wind speed data with a lower 
number of parameters and thus the complexity in 
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computation is less. But as the forecasting horizon 
increases, the prediction error also increases [3, 14]. 

Randomness and variations in wind speeds are 
analyzed in a better way by using the Machine Learning 
approaches such as ANN, random forest, k -NN, LR, 
decision tree, support vector machines [16]. These are 
based on Artificial Intelligence (AI), deals in a better way 
with non-linear and complex problems of forecasting. 
Although some of these AI methods may face the data 
acquisition issues and are sensitive to errors concerning 
learning rates [17], yet these models can fit the WSF 
problem in a better manner as compared to time series 
models [17-18]. 

This paper presents a comprehensive study comprising 
of traditional time series method and machine learning 
methods for univariate onsite WSF, i.e., forecasting is done 
only for one WF for which the dataset is available. A 
detailed conceptualization of ARIMA based time series 
forecasting along with some machine learning forecast 
models such as LR, k -NN, and ANN models is presented. 
These modes are implemented on the wind speed dataset of 
Jaisalmer, Rajasthan WF available for the month of 
September 2018. The comparison of these forecast models 
illustrates that the ANN model forecasts the wind speed 
with the best precision and quality out of the chosen 
models. 

The rest of the paper is organized as follows. Section II 
gives detail of the statistical forecasting models with 
special emphasize on ARIMA model. Section III describes 
in brief the concept of regression-based machine learning 
with the details of LR model, k -NN, and ANN models. 
Section IV shows the case study of WSF for the Jaisalmer 
WF. Finally, the conclusions are drawn in the section V. 

II. STATISTICAL FORECASTING MODELS 
Time series models are major statistical models that can 

be used to predict the wind resource in power system. The 
primary purpose of time series modelling is data acquisition 
and to analyse the historical events to propose a model with 
suitable coefficients. This model can potentially explain the 
deep-rooted structure of the series and can be used for 
forecasting the upcoming elements of time series [18]. A 
time series can be stationary and non-stationary, depending 
on the mean and variance of the series.  

A stochastic time series process, i.e., wind speeds, is 
generally a non-stationary process. Its mean and variance 
changes with time. Further, the covariance value depends 
only on the number of lags between the two values. It has 
no relation with the exact time gap between the concerned 
time series elements [14]. By taking an adequate number of 
differences or logarithmic transformations, these stochastic 
wind speeds become stationary. Differencing is one way of 
creating a time series stationary by computing the 
differences between the two consecutive observations. To 
make a constant variance of the time series logarithmic 
transformations are done [14]. The equation for first order 
differencing and logarithmic transformations are: 
 1

'

t t ty y y                                                             (1) 
 ln

t ty ln y                                             (2) 
Where, ty  is the predicted output of time series, 1ty   is 

the first lag value of the variable of interest. 

Based on the dependency of forecast on historical 
values and forecast errors, time series models are grouped 
into white noise, random walk model, autoregressive (AR) 
model, moving average (MA) model, autoregressive 
moving average (ARMA) model, and autoregressive 
integrated moving average model [18]. This paper 
discusses ARIMA model in detail. 

A.  ARIMA model 

Time series ARIMA model uses historical values and 
past forecast errors of the variable for predicting the 
future values. AR terms of the time series model uses the 
concept of forecasting the wind speed using a linear 
comination of the historical value of the variable up to p  
lags. MA terms of the time series model uses the forecast 
errors in a regression-like model up to q  lags. ARMA 
model understands the significance of using both AR and 
MA terms for accurate forecasting. But the time series for 
the wind speed is not stationary. For this purpose, the 
ARIMA model comes into forecasting scenario [13, 18]. 

 The time series equation goes through some 
mathematical transformations, like differencing, to analyze 
any non-stationary time series by making it stationary. 
Thus, the degree of differencing d  is included along with 
the AR and MA lags to conclude the order of ARIMA 
model as ( , ,p d q ) [13-14]. The final equation of ARIMA 
( , ,p d q ) is given by (3): 

1 1

p q
d d

t t k t k j t j

k j

y c e y e  

 

                                    (3) 

Where, c  is the constant drift or the average of the 
changes between the consecutive observations, and te  is the 
white noise or error of time series forecasting, j  and k  are 
the indices of MA and AR time lags, , 1k k p   are the 
coefficients of historical values of time series, , 1j j q   
are the coefficients of forecast errors of time series. By 
varying the coefficients 1 p   and 1 q  , multiple time 
series are obtained. Also, the error term 

te  effects only the 
scale of the time series. The pattern of the series remains 
unaltered with any variation in 

te . 
The ARIMA ( , ,p d q ) equation can also be written as: 

  

 

2
1 2

2
1 2

1 1

1

dp

p t

q

q t

B B B B y

c B B B e

  

  

    

     

                          (4) 

Where, B  is called the Backshift operator such that 
 k

t t kB y y  . 

B. ARIMA based WSF Methodology  

The ARIMA model based wind speed forecasting 
methodology is shown in Fig. 1. 

1. Data Refining: The temporally correlated wind speed 
data for the given location is transformed into time 
series format for performing ARIMA model 
simulations. The obtained wind speeds are then plotted 
and analyzed for any non-stationarity, i.e., seasonality 
and trends, etc. 

2. Mathematical Transformation: To make the data 
stationary, logarithmic or differencing transformations 
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 are done to stabilize the variance as in (1) and (2).  
 

 
Fig. 1. ARIMA model based WSF methodology. 

3. Model Order Identification: Next, the Auto-
Correlation Function (ACF) and Partial Auto-
Correlation Function (PACF) of the stationary data are 
observed to identify the model order ( p,d ,q ).  
The mathematical formulations for ACF and PACF are 
provided in (5) and (6) respectively. If 

ty  is the 
original series and y  is the mean of the data, then the 
autocorrelations of order 0,1,2, ,k n , where n is 
total number of lags possible, is computed as: 
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                                                                                           (5) 
 

   

1 1

1 1 1 1

cov , | , ,

var | , , .var | , ,
t t k t t k

t t t k t k t t k

y y y y
PACF

y y y y y y

   

      

       

(6)  
The model order is selected for which the Akaike 
Information Criteria (AIC) value is least or minimum. 
The formula for AIC determination is stated in (7).  

 2 lnAIC P L                                                        (7) 
Where P  is the number of parameters estimated for the 
model and L  is the maximum value of the likelihood 
function for the model. The model order chosen is 
correct if the ACF and PACF plots of the residuals is 
similar to that of the white noise pattern.  

4. Forecasting: Next, the ARIMA model is fitted and 
simulated for the model order ( p,d ,q ) selected and 
then the forecasts are obtained for the ahead values.  

5. Error Analysis: Finally, the error analysis using RMSE 
and MAE is done. The mathematical formulations for 
RMSE and MAE are provided in (8) and (9). 

 
2

1

1 n

i t

i

RMSE y y
n 

                                            (8) 

 
1

1 n

i t

i

MAE y y
n 

                                                     (9) 

Where,
iy  = predicted or observed value of variable, 

and 
ty = actual value of variable. 

III. MACHINE LEARNING FORECASTING MODELS 
Machine learning is an implementation of AI that 

provides the system to learn and improve automatically 
from experience without being programmed explicitly. 
Machine learning focuses on the design and development 
of computer-based algorithms that can access the data, use 
it, and learn on itself. The primary motto is to grant the 
computers to acquire the knowledge automatically without 
human assistance or intervention and tune actions 
accordingly [17]. The learning process begins with 
observing the historical data provided to look for trends and 
patterns in it, thereby making better decisions in the future. 
Machine learning is further grouped into unsupervised and 
supervised learning. The below subsections provide a 
detailed understanding of some machine learning 
algorithms, i.e., LR, k -NN and ANN forecasting models. 

A. Linear Regression Model 

LR is a linear forecasting technique to map the 
correlations among independent variable(s) X  and 
dependent variable Y . The number of independent variable 
may vary from one to many. LR technique is used to fit a 
forecast model to a dataset of dependent and independent 
variable. Such a model can predict the future value of 
dependent variable Y  (wind speeds) based on the new X ’s 
values. LR models are generally fitted using the maximum 
likelihood estimation or least square or approach [16]. This 
mathematical equation for LR can be generalized as (10): 

1 2Y X                                                          (10) 
Where, 1   is the intercept and 2  is the slope. 
Collectively 1 and 2 are called regression coefficients.   

 is the error, i.e., the part of Y that this forecasting model is 
unable to explain.  

B. k -Nearest Neighbors Model 

k -Nearest Neighbors or k -NN is a classification or 
regression based forecasting technique that accumulates all 
possible forecast outputs. Based on the most similar or 
resembling inputs, the statistical output is predicted using 
the distance formula. k  specifies the number of neighbours 
that should be considered while making the classification or 
regression. The value of k  effects the prediction results. In 
general, larger k  value raise the precision level by reducing 
the overall noise. But bigger k  is not always the winner. It 
is advised to keep k  as small as possible (but not much 
smaller) because a smaller k  may utilize subtler patterns. 
The value k  relies on the complexity of the trend or pattern 
to be learned as well as the impact of noisy data [16]. 

The k -NN algorithm is sensitive to outliers. So, a more 
smooth and stable decision can be made by appropriately 
choosing the k  value. The value of k  can be optimized 
using data inspection. Cross-validation is an alternative to 
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retroactively determine an optimum k -value by using an 
independent data set. Voronoi diagrams are a way to 
describe the k -NN algorithm solution. The Voronoi 
diagram is formed from lines that bisect and are 
perpendicular to the lines that connect two neighboring 
vertices [16, 19]. Fig. 2 shows the Voronoi Tessellation for 
k -NN algorithm. There is one Voronoi cell around every 
training example. 

 
Fig. 2. Voronoi tessellation for k -NN [19]. 

Here 
ip  are the site or training points, q  is the free or test 

point, e is the Voronoi edges around each site point, and v 
is the vertex of the Voronoi tessellation.  

The dataset of interest is partitioned into different 
possible outputs as different symbols in Fig. 3. For any new 
prediction, the distances between the new input and its 
possible outputs are calculated.  The Euclidian distance 
function is used for this purpose as shown in (11).  

Euclidian:  
2

1

k

i i

i

x y


                                             (11) 

Also, the optimal value of k  is computed as per the 
complexity of dataset (for example, k  = 5 for Fig. 3). 

 
Fig. 3.  k -NN decision-making criteria [19]. 

The nearest neighbors are found by ranking these 
distances in increasing order. In case, multiple possible 
outcomes are equidistant to the new input, the final output 
is predicted based on the probability of occurrence of a 
particular outcome. 

C. Artificial Neural Network Model 

The concept of ANN is analogous to the theory of 
biological neurons which processes and pass on the 
information to its adjacent neuron after processing. These 
neurons have a natural tendency to store experimental 
knowledge and use it when required [17, 20].  

ANN is a set of interconnected input-hidden-output 
layers, each having perceptron units (a single neuron is 

called as perceptron). Perceptron of the adjacent layers are 
connected with the weighted values, computed using the 
learning process. 

 
Fig. 4. ANN learning algorithm with back-propagation technique. 
 

ANN is a complex adaptive system, i.e., it has the 
ability to change its internal structure by adjusting weights 
of input layers. Based on the analytical procedure adopted 
for the evaluation process, neural networks are classified as 
Multilayer Perceptron (MLP) neural network, Elman 
Recurrent (ER) neural network and Simultaneous Cascade-
Correlation (CC) neural network [20, 21]. This paper uses 
the MLP neural network approach for performing WSF. 

1) Multilayer Perceptron Neural Network  

MLP is one of the most compatible forms of neural 
network that provides a powerful solution to several 
classification and regression problems, including power 
systems. MLP captures the information from the learning or 
training dataset for Feed Forward Neural Network and 
assigns guess weights to the interconnections. Then Back 
Propagation technique is used to fit the input parameter(s) 
precisely to the MLP model. The performance metrics are 
computed for each iteration. The error is fed back for the 
re-computation of improved synaptic weights so that finally 
the prediction errors are minimized for a given set of input 
parameters. In case of MLP neural network, the number of 
hidden layer can be adjusted according to the needs. A 
large number of hidden layers may result in defining the 
input-output correlation with greater accuracy. However, it 
is often misinterpreted that increased count of hidden layers 
always leads to good results. In many cases, it may turn out 
in slowing down the evaluation procedure as well as lead to 
problems such as over-fitting, negative correlation, etc. 
[20]. Fig. 4 shows the MLP neural network architecture 
specifying ANN learning algorithm with Back-Propagation 
technique.  

2) Mathematical Formulation 

The objective function for the ANN based onsite WSF 
problem is the minimization of RMSE function given in 
(12). To minimize the RMSE, it is desired to have optimal 
values of synaptic weights. Synaptic weights refer to the 
strength or amplitude of a connection between the two 
neurons. A weight decides how much influence the input 
will have on the output.  

The learning algorithm is iteratively applied until the 
optimized weights, wt  and bias or threshold correlation 
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coefficient,   are assigned such that any deviation from 
these weights and bias for the validation dataset keep on 
raising the final RMSE output of (12).  For the given set of 
input-output parameters, 

ix  and 
iy  respectively, the 

RMSE is minimized iteratively as follows:           

   
2

1

1, , ,
h

i i

i

E wt y f x wt
h

 


                       (12)  

Where h  is the number of neurons in each layer, E  is the 
error signal. The procedure starts with an initial optimal 
guess values of wt  and,  . In every new iteration, the 
values of wt  and,   are modified as (13) and (14). 

wt wt wt                                                           (13) 
                                                                       (14) 
The values of wt  and   are computed as (15): 
     , , , ,i if x wt wt f x wt G wt           (15) 

Where, G  is the gradient of function f  concerning wt  
and  . The process is repeated until RMSE of (12) 
becomes minimum and the gradient of  ,E wt   is 
approximately zero. 

 
Fig. 5. Machine learning based WSF methodology. 

D. Machine Learning based WSF Methodology  

Detailed methodology for simulating machine learning 
models for univariate and multivariate parameters (wind 
speeds, directions, temperature, etc.) is depicted in Fig. 5.   
1. Data Refining: The wind speed data for the given 

location is transformed into data frame format for 
performing machine learning simulations. 

2. Learning Algorithm: The obtained dataset is then 
segregated into two parts- training dataset and test set. 
The training dataset is then used for the model learning 
process and the test set is used for model performance 
analysis. Then, a dependency formula is prepared, 
stating the output depends on the input, to execute the 
learning process. 

3. Parameter Specification: Weights or parameters 
(linear coefficients for LR, k  value for k -NN, and 
weights, hidden layers, hidden neurons and bias for 
ANN) are assigned based on the knowledge acquired 

from the training dataset. By adopting the closed loop 
path, the parameters are optimized for least possible 
errors. 

4. Forecasting: The machine learning models are then 
fitted and simulated on the learning algorithm and then 
forecasting is performed. 

5. Error Analysis: Finally, performance evaluation is 
done using RMSE and MAE performance metrics as per 
(8) and (9).  

IV. CASE STUDY 
A. Dataset 

The onsite forecast approaches are illustrated by 
simulating on the wind speed data of Jaisalmer, 
Rajasthan, India recorded at an interval of 10 minutes. 
The data is taken from the database of National Institute 
of Wind Energy, Chennai for ten days in September 
2018. The wind speed is recorded at a hub height of 120 
meters, having an average of 8.1166 m/sec. Along with 
wind speeds, prevailing wind direction, temperature and 
pressure at hub height are also used for forecasting. 
Whole data is arranged in a data frame format by creating a 
2-D grid pattern having variables (wind speeds, prevailing 
wind direction, temperature and pressure) as the columns 
and the corresponding values arranged row-wise. Initial 
121 observations are given as training set or input. Its 
affirmation on the learning dataset optimizes the 
implementation of the model fitting strategy. The next 
ten observations are used as the test set to evaluate the 
performance of the forecast models. Finally, the 
performance evaluation of the proposed model is 
assessed by comparing its forecast values and errors with 
benchmark models. Fig. 6 shows the actual wind speed 
data of class ‘time series’ which is used as an input for the 
statistical univariate forecasting models.  

 
Fig. 6. Actual wind speed data used for simulations. 

 
Fig. 7. Stationary differenced wind speed data. 

B. ARIMA model  

Time series models work on stationary dataset only. 
The wind speed data in Fig. 6 is non-stationary, i.e., has a 
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non-zero mean and fluctuating variance. Therefore, for 
using ARIMA forecasting model, the wind speed data 
should be converted into stationary data by taking the 
differencing of the original time series data and/or by 
adopting the differencing technique as shown in Fig. 7.  

Next, to estimate and fit ARIMA model on the 
differenced time series of Fig. 7, the order of ARIMA 
model is computed. Model order estimation can be done 
using ACF and PACF plots analysis. Fig. 8 shows the ACF 
and PACF plots of the differenced wind speed data. Some 
conclusions are drawn from Fig. 8 that aids to find the 
order  , ,p d q of the ARIMA model.  

 
Fig. 8. ACF and PACF plots for differenced wind speed. 

 
Fig. 9. Forecasts of wind speed obtained using ARIMA. 

 This ACF and PACF plot is obtained after once 
differencing the original time series data, so, the value 
of 1d  .  

 Both ACF and PACF plots are cutting off at some time 
lags instead of tailing off. So, both p  and q  are non-
zero.  

 The PACF plot cuts off at lag 3, so order of AR ( p ) = 3.  
 The ACF plot cuts off at lag 2, so order of MA ( q ) = 2.  
 So, ARIMA model order  , ,p d q is (3,1,2).  

After obtaining the ARIMA model order, it is fitted and 
simulated on the differenced wind speed data. The results 
obtained are the forecasted valued for the next 10 points, 
each @ 10 minutes’ time interval, i.e., up to one-two hours 
ahead forecast. The 80% and 95% confidence interval are 
also shown in Fig. 9. The forecast results are shown 
graphically in Fig. 9 with red colour. Finally, the RMSE 
analysis is done based on the given test data and the 
forecast values, which comes out to be 0.834 m/sec or 
10.27% deflection from actual wind speed.  

C. k -Nearest Neighbors model 

The wind speed data of class ‘data frame’ is given as 
input vector. k - NN regression is applied to forecast the 
value of the wind speeds. Twenty lags are used as training 
variables. The number of neighbors considered to forecast, 
k , is 3. The forecast error is 0.92 m/sec, i.e., 11.33% 
deviation from actual wind speed. Fig. 10. shows the 
graphical form of the forecasted wind speeds using k -NN. 

 

Fig. 10. Forecasts of wind speed obtained using k -NN. 

D. Linear Regression model 

The above mentioned wind speed dataset is made input 
as an object of class ‘formula’ to forecast using the LR 
technique. The linear model is fitted by giving a symbolic 
description of the linear predictor, i.e., formula, and 
Gaussian error distribution. The RMSE forecast error for 
LR forecasting technique is 0.83 m/sec or the forecasted 
wind speed has a variation of 10.26% from the test values. 

E. ANN Model 

 
Fig. 11. Forecasts of wind speed obtained using ANN. 

 
ANN forecasting model considers the following 

formula for performing forecast:  
~speed time speed                                                 (16) 

 Fig. 11 shows the graphical form of the forecasted 
wind speeds using ANN. The RMSE forecast error for 
ANN forecasting technique is 0.472 m/sec.  

F. Comparative Performance Evaluation of WSF Models 

The results obtained concerning the RMSE and MAE 
for the Jaisalmer wind speed data after executing various 
univariate forecasting models are presented in Table I. 

The similar results are shown graphically in Figs. 12 
and 13 concerning forecast wind speeds and RMSE, 
respectively. 
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TABLE I 

FORECASTED WIND SPEEDS WITH RMSE AND MAE FOR DIFFERENT MODELS 
Actual wind 

speeds 
(m/sec) 

Predicted wind speeds (m/sec) 
k -NN LR ANN ARIMA 

6.12 5.31 6.51 5.703 5.94 
6.43 5.17 6.494 5.831 5.73 
5.93 5.25 6.479 5.959 5.84 
6.26 5.72 6.463 6.087 5.73 
5.44 5.74 6.447 6.215 5.778 
5.69 5.81 6.369 6.856 5.712 
6.48 5.53 6.354 6.984 5.724 
6.47 5.73 6.338 7.112 5.681 
7.1 5.25 6.322 7.24 5.676 
7.57 6.12 6.307 7.36 5.64 

RMSE  0.920  0.830 0.472  0.834  
MAE 0.864 0.654 0.415 0.782 

 
Fig. 12. WSF comparative analysis using ARIMA, LR, k –NN, and ANN.  

Hence, the order of forecast accuracy for the models of 
interest is maximum for ANN followed by LR, ARIMA 
and then for k -NN. The accuracy for k -NN is least 
because it is more a classification approach rather than 
regression.  

 
Fig. 13. RMSE comparison for ARIMA, LR, k -NN, and ANN. 

V. CONCLUSION 
The power system operational issues have spiked due to 

the grid integration of intermittent and uncertain wind 
power. Therefore, accurate wind resource forecasting is an 
indivertible necessity for optimal wind penetration to the 
grid. In this context, this paper first presents a review of the 
state-of-the-art of various elementary wind forecasting 
models. WSF models based on machine learning, namely, 
k -NN, LR, ANN are compared with time series ARIMA 
model. Numerical results imply that machine learning 
based ANN has maximum forecast accuracy out of the four 
mentioned models. ARIMA model is not so accurate 
because the forecasts converge to the mean of the series 
after some forecast values. Moreover, ANN fits the dataset 
best due to its enormous capacity to learn and predict. A 
possible improvement of the proposed work could be 
achieved by proposing an advanced WSF technique that 
considers the spatio-temporal dependency of WFs located 

near each other. Also, the impact assessment of spatio-
temporal correlations in wind forecasting can be done in 
future. 
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