Controlling Power Generation and Ancillary Services from Wind and Solar in India

Presenter:

Dr. Thomas Ackermann Energynautics GmbH, Germany

Partners/Co-Authors:

U. Focken (energy & meteo systems), S. Garud (The Energy and Recources Institute), C. Nabe (Navigant Energy), M. Kaur (GIZ, India), E. Tröster (Energynautics), T. Schlösser (Energynautics), D. Masendorf (Energynautics)

Contracting Authority:

Consortium:

Agenda

- 1. Current Situation in India
- 2. Grid Code Recommendations
- **3.** Retrofitting Possibilities
- 4. Market Recommendations
- 5. Summary

Project Motivation

Wind and Solar Penetration Levels

State	Wind and Solar Penetration (2018-19)	Maximum Daily Energy Penetration of Wind and Solar	Maximum Instantaneous Penetration of Wind and Solar	Worldwide Solar plus Wind Penetration	
Karnataka	23 %	56 %	90 %	Levels in Large Grids	
Tamil Nadu	13 %	38 %	48 %	Europe: ~ 13 – 14 %	
Andhra Pradesh	21 %	51 %	71 %		
Gujarat	11.6 %	33.2 %	39.5 %	USA: ~ 10 %	
Maharashtra	5.7 %	18 %	23 %	China: ~ 6.6 %	
Madhya Pradesh	8.7 %	30 %	42 %		
Rajasthan	14.2 %	34 %	50 %	Source: ENTSOE; https://docstore.entsoe.eu/Documents/P	
Western Region	8.3 %	20 %	24.2 %	ublications/Statistics/Factsheet/entsoe_sf s2018_web.pdf	
Southern Region	15 %	30 %	47 %	US; <u>https://www.eia.gov/electricity/data/</u> browser/	
All India	8 %	15.1 %	19.4 %	China: https://chinaenergyportal.org/en/2017- electricity-other-energy-statistics-update- of-june-2018/	

Current Developments in Indian Power Sector:

- Increase in Renewable Energies (Decentralization)
- Ancillary Services get more important
 - Frequency and Voltage Control
- Renewables will also have to provide Ancillary Services

Methodology:

- India's Grid Code in Technology-Follower Position
- Can profit from international best practices AND mistakes
- Recommendations based on international experience

BUT: Each country is different! Open discussion is very important.

Requirements for renewables have been updated recently:

- Technical Standards for Connectivity to the Grid (Amendment) Regulations published in February 2019
- Specifies requirements for renewables for:
 - Operation range (voltage, frequency)
 - Fault-ride-through
 - Frequency response
 - Remote controllability

Indian Grid Code

Frequency

- All RE generating unit shall be capable of operating in the frequency range **47.5 to 52 Hz**
- All RE generating unit shall be able to deliver **rated output** in the frequency range of **49.5 Hz to 50.5 Hz**

Voltage

 All RE generating unit shall be able to maintain their performance with voltage variation of up to ± 5%

Fault-Ride-Through:

• During FRT, priority is given to **reactive power**. Active power shall preferably stay constant

RE Generators with rated power of more than **10 MW** connected to **33 kV** or above:

- Shall have the facility to control **active power** based on **directions** from SLDC or RLDC (telephone call)
- Shall be equipped with the facility for controlling the rate of change of power output at a rate of not more than ± 10% per minute
- Shall have frequency controllers at a droop of 3 to 6% and a dead band not exceeding ±0.03 Hz
- No reactive power requirements yet

Only Generators with rated power of more than **500 MW**:

• Shall have the facility to control **active** and **reactive power** based on **signals** from SLDC or RLDC

Frequency Reserves

Primary

• 5s-5min

Secondary

• 30sec-15min

Fast Tertiary

• 5-30min

Slow Tertiary

• 15-60min

Generation rescheduling

• 60min+

India Current Situation:

- No specific market for renewables yet
 Recommendation:
- Improve markets with renewables in mind
- Short gate closure
- Pooling

Indian Reserve Market

• Only primary and tertiary reserves are implemented so far

Primary reserve

- Regulated by Indian Electricity Grid Code
- To be provides by:
 - Thermal units of 200 MW and above
 - Hydro Units of 10 MW and above
- Shall operate in "Restricted Governor Mode":
 - Droop setting between 3% and 6%
 - No power reduction below 50.2Hz
 - Ripple filter of ±0.03Hz

Indian Reserve Market

Tertiary reserve

- Regulated by CERC (Ancillary Services Operations) Regulations, 2015
- Currently only central **government owned thermal power plants** included in tertiary reserve provision (approximately 67 power plants across India)
- Nodal agency creates merit order of costs of all **available** generation surplus
- Nodal Agency directs ancillary service providers according merit order, when required

Grid Code Recommendations

Limited Frequency Sensitive Mode (LFSM)

Change of active power depending on the frequency

- Renewables on plant level
- Tolerance and steepness are the main parameters
- Over-frequency: Ramp down always possible
- Under-frequency: Ramp up, only in curtailed mode

India Current Situation:

• Required from 10 MW + Recommendation:

ECOFYS

energy nau

roy and Besources Institute

energy & meteo

- Include for all plants
- Adjustable tolerance (±0.6 Hz) and steepness (2-12%)
- Remote parameter change

Delta-Control

Provide LFSM-u headroom

- Plant operating in curtailed mode
- Good Forecasting & Gate closure times necessary
- Virtual Power Plants helpful to reduce error

India Current Situation:

- Not required **Recommendation**:
- Require basic capabilities of all plants
- Exact parameters in later Grid Code amendment
- Remote parameter change

Grid Code Amendment Applicable for generation stations larger 10 MW connected to 33kV+

Paragraph:

(ii) **shall have** governors or frequency controllers of the units at a droop of 3 to 6% and a dead band not exceeding ± 0.03 Hz

Provided that for frequency deviations in excess of 0.3 Hz, the Generating Station shall have the facility to provide an immediate (within 1 second) real power primary frequency response of at least 10% of the maximum Alternating Current active power capacity;

Problems:

- Capability vs. Constant Requirement (1. Generation Costs; Legal Disputes)
- 1 Second Reaction (1. Wind and Synchronous Generation)
- 10% of Capacity (1. Solar at Night?; 2. VRE Forecasting)

Voltage Control

Voltage needs to stay in dead band

- Reactive Power to keep nominal Voltage
- Exact values sent by grid operator
- Potential increase in hosting capacity
- Reactive power dependent on nominal active power (active power output independent) not power factor
- Methods: Constant Q and Q(U)-Control

- Not required **Recommendation**:
- Include for all plants
- Require reactive power range of $\pm 0.33 \text{ Q/P}_{inst}$
- Remotely Controlled
- Const. Q & Q(U)-Control

Grid Code Compliance

- Disconnection of non-compliant generators
- Declaration
 - Risk of cheating
 - Low bureaucracy
- Model Certification
 - Cost intensive
 - Dynamic analysis
- Actual testing
 - Restricted to some parameters
 - High effort for large power plants

India Current Situation:

- Enforcement unclear **Recommendation:**
- Accept Compliance of similar Grid Codes (EU)
- Run ex-post tests
- Start building up modelling capabilities

Retrofitting Possibilities

Retrofitting methodology

For Wind and Solar in South India:

(Andhra Pradesh, Karnataka, Kerala, Telangana and Tamil Nadu)

1. Analyze existing Parks

- a. (Re)-active power control possible?
- b. Scada connection available?
- c. Control logic available?

2. Cost analysis

a. Broken down for each generator type

3. Incentives

a. The case of Germany

ECOFYS

energy nau

roy and Resources Institute

energy & meteo

Wind Power Plant in South India

- Installed capacity:
 - 18.2 GW (MNRE, 31-05-19)
- Surveyed turbines:
 - Suzlon, Windworld, GE, Gamesa and Vestas
 - → 75% of installed capacity (GlobalData database)
- All turbines have (re)-active power control capabilities
 - Except Vestas V39 (~1% ; 137 MW installed capacity)
- <u>However</u>, farm's control devices are missing in all farms
 - Currently, active power regulation is a manual process locally
 - Proprietary solution from each manufacturer
 - No Reactive Power Control

ECOFYS

energy na

& meteo

Resources Institute

Manufacturer	Turbine type	Solution name	Costs [mil. rupee/park]
Windworld	E 53, E 48, E30	RTU-I RTU-C (or FCU)	2 (RTU-I open-loop) 3.6 (RTU-C closed-loop)
Vestas	V82, V100, V110, V120	Vestas Power Plant Controller	3.2
	V39	Vestas Power Plant Controller + Turbine retrofitting	12 (only open loop active power control)
GE	GE 1.7-103	GE WindCONTROL	4
Siemens Gamesa	G90, G97, G114, G52	CPC controller	4-8
Suzlon India	S88, S97, S111, S120, S64, S66, S70, S82, S52	Power Plant controller	Estimated: 4-12 (higher cost for older plants)

Solar Power Plant in South India

- Installed capacity:
 - 13.2 GW (MNRE, 31-05-19)
- Surveyed capacity:
 - ~30% (Interviews)
- All Inverters have (re)-active powercontrol capabilities
- All SCADAs have grid operator interface and set point capability

Resources Institute

ECOFYS

energy**na**

& meteo

- **However**, no logic is currently implemented in Plant-SCADA
 - Currently, active power regulation is a manual process in SCADA

Technology	Solution	Estimated Costs per park
Solar Parks	Specific Solution: Implementing logic in existing SCADA	0 – 160,000 rupees for the hardware + 20 person days
	General Solution: Additional PLC (programmable logic controller) and implement necessary logic in the device	One time: 40 person days for development Per integration: 320,000 rupees for hardware + 5 person days

Market Recommendations

Reserve market recommendations (1/2)

Ensure that reserves from conventional generation are provided in an economic way

- Important market reforms are underway
 - Decrease costs of reserves from conventional generation
- Reserve markets should enable the provision of reserves from all conventional generators (incl. interstate)
- Economic tipping point depends mainly on:
 - Conventional generator inflexibility
 - Grid situation
 - Instantaneous penetration of renewables

India Current Situation:

- Reserve market reforms underway
- Not clear when primary and secondary reserves from renewables are needed

Recommendation:

- Enable reserve provision from conventional generation on a large scale
- Determine timing for the expected use of reserves from renewables

Reserve market recommendations (2/2)

Enable renewables for long-term reserve market participation

- The must run status needs to specified to allow compensation for curtailment (equivalent to provision of negative tertiary reserves)
- New renewable generators should be technically ready to provide fast reserves
- The definition of new market rules for renewables should already now consider the specific properties of renewables (short lead times, pooling permitted) – no technology agnostic approach
- The achievable prediction accuracy of renewable generation is important to define the requirements in the Indian context

India Current Situation:

- Unclear must-run status of renewables
- Renewables are not ready to provide fast reserves
- Current market reform discussions discriminate against renewables

Recommendation:

- No technology agnostic approach
- Short lead times for procurement, pooling permitted

Summary

- **1.** Ancillary Service Capabilities should already be required today
- 2. Retrofitting comes at relatively low cost
- 3. Retrofitting should be incentivized for frequency control
- 4. For new parks LFSM & Q(U)-control should be required right away without reimbursement
- 5. Frequency operation reserve markets are under way
- 6. General market barriers (PPA's, Interstate Energy Trading) have first priority

Foundation for Ancillary Service by Wind and Solar has to be set today

IRENA Grid Code Report

Link:

http://www.irena.org/DocumentDownloads /Publications/IRENA_Grid_Codes_2016.pdf

(or google "IRENA Grid Codes")

Thank you for your attention!