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Abstract—Declining costs of Lithium-based batteries can en-
able grid-scale storage to provide peaking capacity and energy
balancing services, especially to systems with high variable
renewable energy shares. Using a new capacity expansion model
with high spatial and temporal resolution, we examine cost-
optimal investments in generation and storage capacity for high
renewable energy scenarios in India. While energy generation
from both wind and solar photovoltaic technologies is becoming
increasingly cost-competitive with India’s traditionally domi-
nant coal-based generation, low-cost battery storage will be key
to a cost-effective transition towards deep decarbonization.

I. INTRODUCTION

Building on its renewable energy target of 175 GW by
2022, India is poised to pursue much higher targets by
2030, mainly to take advantage of the low costs of solar PV
and wind technologies. The Government of India’s (GoI)
Central Electricity Authority (CEA) projected the variable
renewable energy (VRE - wind and solar) capacity to reach
440 GW by 2030 [1]. Higher penetration of VRE generation
will increase the variability of net demand, which is defined
as demand minus wind minus solar generation. Increased
variability leads to greater curtailment of renewable energy
and increased system costs caused by constraints on con-
ventional generators such as minimum generation levels and
limited ramp rates. Studies examining the impacts of high
shares of VRE generation have shown the benefits of various
strategies including larger balancing areas, greater flexibility
of conventional generators, demand response, and optimal
VRE capacity mixes [2], [3], [4]. The limited availability of
natural gas and hydropower for providing peaking capacity
and balancing resources coupled with the dramatic fall in in-
ternational prices of battery storage systems [5], specifically
Li-ion batteries, has triggered a significant interest in battery
storage systems to help integrate VRE generation.

Many studies, mainly focused on the U.S. or European
regions have employed capacity expansion models to ex-
amine the impacts of high VRE penetration and strategies
including battery storage to reduce those impacts [6], [7],
[8]. Other studies have analyzed the effect of storage on
the value of wind and solar [9] and the storage duration
required to reduce VRE curtailment [10]. Very few studies
have focused on high VRE penetration in India and the
role of storage [1]. In this study, we explore the impacts of
different cost trajectories of wind, solar PV, and Lithium-
based battery storage on generation and storage capacity

investments while meeting different VRE generation targets
of up to 70% by 2030. Insights from our analysis can inform
capacity investments in conventional generation, renewable
energy, and battery storage in India.

II. METHODS

A. Model

We modeled India’s electricity system using GridPath, a
production cost and capacity expansion modeling platform.
In this analysis we used GridPath’s capacity expansion
functionality to co-optimize power system operations costs
and investments in new system infrastructure including gen-
eration and storage while meeting load, reliability, and policy
goals. For details on the GridPath model, see [11], [12].

We simulated India’s electricity system over 4 investment
periods - 2018, 2022, 2026, and 2030. Each investment
period represents four years. Within each period, we sampled
demand, wind, and solar data for one day per month and
24 hours per day, giving 288 time points for each of
the 4 investment periods. By minimizing total operations
(variable) costs and investment (capital) costs across all
investment periods, the model chose the most cost-effective
deployment of conventional and renewable generation as
well as storage to meet demand during all sampled time
points. In this version of the model, we did not include
transmission or demand response constraints or investments.

B. Data

We created hourly demand time series for the four invest-
ment periods by linearly extrapolating India’s hourly demand
data for 2014 [13] to meet future annual demand as projected
by the 19th Electric Power Survey [14]. To simultaneously
meet annual peak demand projections, we adjusted the shape
of the demand duration curves by uniformly increasing
or decreasing the load in peak hours and correspondingly
decreasing or increasing the load in off-peak hours. For each
month, we then chose one day for which daily electricity
demand most closely matched the average daily demand for
that month. Only days between the 11th and 20th days in a
month were considered to ensure adequate temporal distance
between subsequent sampled days.

Installed generation capacities for conventional generators
were adopted from [3]. We assumed zero variable costs
for hydro power plants. Variable costs for other existing
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conventional generators including coal, natural gas, diesel,
and biomass power plants were adopted from [3].

For new candidate conventional generators, we considered
only combustion turbine (CT or peaker) plants, combined
cycle gas generators (CCGT), and super-critical coal power
plants. We assumed both CT and CCGT new power plants
will consume imported liquefied natural gas (LNG) because
of limited domestic natural gas availability in India. We
excluded new nuclear and hydro plants because of the
uncertainty in their development. However, including these
technologies in new capacity build-outs is unlikely to change
the main conclusions of this study. We did not consider any
retirements of power plants during the investment periods.

Cost and other parameter assumptions for new conven-
tional plants are presented in I. We assumed that the real
costs of both existing and new conventional generation plants
remain constant across all investment periods.

For system operations, we captured the main constraints
on conventional generation plants. We assumed average
minimum generation levels of coal plants to be 60%, five
percentage points above the Central Electricity Regulatory
Commission’s recommended level of 55%, because of the
inability of some older power plants to comply with the
lower level (Fig. I). We assumed minimum generation levels
for natural gas generators to be lower than coal, a reflection
of their greater flexibility. Because of the hourly resolution
of the model, we did not include ramp rate constraints
of conventional generators. The least flexible conventional
generator – a coal generator unit – can have a ramp rate
of 1 % of rated capacity per minute, which allows it to
ramp from 60% to 100% of rated capacity in 40 minutes,
less than the hourly time step of our model. Hydro storage
was dispatched under energy generation constraints derived
from monthly energy generation in 2014. Hydro run-of-river
and pondage power plants were dispatched as non-curtailable
variable generators with the same generation outputs from
2014. Nuclear and biomass generators were dispatched as
must run generators.

TABLE I
PARAMETERS FOR NEW CONVENTIONAL GENERATION

Coal CCGT CT

Capital cost [USD/kW] [15]1 1,140 775 678
Annualized fixed cost [USD/kW-y] 140 78 65
Fixed annual O&M costs
[USD/kW] [16]

42 11 7

Variable annual O&M costs
[USD/MWh] [16]

5 4 11

Start up and Shutdown costs
[USD/MW]

69 289 58

Discount Rate (real) 7% 7% 7%
Plant life [years] 25 25 25
Minimum generation level [% of
rated capacity]

60% 50% 40%

Fuel cost [USD/GJ] [17] [18] 2.6 9.5 9.5
Heat rate [MJ/kWh] [19] 10.3 8.7 12.1

Capital costs from source are adjusted to 2018 US Dollars and include
additional costs for environmental compliance.
Costs are in 2018 US Dollars.

We adopted wind and solar sites selected in [20]. The site
suitability and site selection analysis followed the method-
ology outlined in [21], [4]. Wind and solar PV sites or

potential project areas were selected using annual average
wind speeds from [22] and annual average global horizontal
irradiance (GHI) from [23] after excluding protected areas,
water bodies, and certain land use land cover types (e.g.
agricultural land in the case of solar, forested land for both
technologies). For wind, we associated 100 locations with
hourly modeled wind speeds [22] with the nearest potential
project areas to estimate the capacity potential associated
with each time series point assuming a land use factor of
2.25 MW per km2. We then converted the wind speeds to
hourly power generation by applying wind power curves as
outlined in [4]. Similarly, for solar, we calculated the power
generation [24] for over 600 locations with hourly modeled
GHI [23] assuming fixed-tilt systems. We then associated
these locations with the nearest potential project areas to
estimate the capacity potential for each location using a
land use factor of 7.5 MW per km2. Because variability
of solar generation reduces significantly after aggregation
across large geographical areas, we aggregated the solar gen-
eration profiles for each state by taking capacity-weighted
means of hourly generation. This aggregation reduced the
number of candidate solar sites from over 600 to 17 and thus,
reduced the size of our optimization problem. To maintain
the temporal correlation between wind and solar generation
and demand, we selected wind and solar hourly generation
data from the same sampled days as demand data.

For 2018, we derived capital costs of wind and solar
PV from India’s 2017-18 renewable energy auctions (II).
For battery storage, we considered only Lithium Ion (Li-
Ion) batteries given their increasing cost competitiveness and
widespread adoption [5]. We assumed costs of battery stor-
age provided by NREL’s Annual Technology Baseline [25].
Cost parameters with capital costs for 2018 are presented in
II. All costs were assumed in constant 2018 US Dollars.

TABLE II
COST PARAMETERS (2018) FOR WIND AND SOLAR PV TECHNOLOGIES

Wind Solar
PV

Li-ion
Battery

Capital cost [USD/kW] 1,250 850 668
Capital cost [USD/kWh] 204
Fixed annual O&M costs
[USD/kW]

15 10 37

Discount Rate 7% 7% 7%
Plant life [years] 25 25 15

Capital costs of wind and solar PV are adjusted for LCOE costs to match
2018-19 auction prices.
O&M costs and plant life of wind and solar PV are from [26].
Li-ion battery cost parameters are from [25].
Costs are in 2018 US Dollars.

C. Scenarios

For future cost trajectories, we assumed two scenarios
each for renewable energy technologies and battery storage
(Fig. 1). In the ’High Cost’ scenario for VRE, we assumed
that real capital costs of wind and solar PV would remain
constant across all investment periods until 2030. In the ’Low
Cost’ scenario for VRE, we assumed capital costs of wind
and solar PV power plants would fall at annual rates of
3% and 5% respectively. These annual cost declination rates
are similar to those assumed in [25]. For the ’High Cost’
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and ’Low Cost’ scenarios for battery storage, we assumed
the ’Battery storage - Low’ and ’Battery storage - High’
projected cost trajectories for capital costs per energy and
power capacity from [25]. Battery storage costs are projected
to reduce from USD 1,484 per kW in 2018 to USD 1,314
per kW (USD 329 per kWh) in 2030 for the ’High Cost’
scenario and to USD 486 per kW (USD 121 per kWh) for
the ’Low Cost’ scenario. Although we have shown costs of
4h Li-Ion battery storage in Fig. 1, we allowed the model to
choose the optimal power and energy capacity for the new
storage build-out.

Fig. 1. Battery storage, solar PV, and wind costs.

In addition to the four combinations of ’High Cost’ and
’Low Cost’ scenarios for renewable energy and battery
storage, we modeled four targets for renewable portfolio
standards (RPS) or Renewable Portfolio Obligations (RPO)
– 10%, 30%, 50%, and 70% – to be met by 2030. These
targets are for only wind and solar generation and not other
renewable energy technologies such as small hydro and
biomass. Including the other renewable energy technologies
would increase the share of renewable energy beyond the
targets assumed in these scenarios. The 10% target approx-
imately represents the 2018 share of wind and solar energy
in India’s power system and the scenario assumes that this
share remains the same across all investment periods. In each
of the higher renewable energy target scenarios, the annual
targets increase linearly until 2030.

By varying the costs of wind, solar PV, and battery
storage for different renewable energy targets, we aimed to

understand the optimal balance between investments in new
generation and storage capacities.

III. RESULTS AND DISCUSSION

A. New generation and storage capacity

The GridPath India model selected the cost optimal new
generation and storage capacities for each scenario subject
to constraints on conventional generator operations, variable
renewable energy generation including wind, solar PV, and
hydro run-of-river, and hydro and battery storage energy and
power availability. The optimal capacity build-outs change
with variable renewable energy targets as well as costs of
wind, solar PV, and battery storage.

With increasing RPS targets, naturally more wind and
solar PV capacity is built (Fig. 2). When VRE costs are
low, 400-440 GW of total wind and solar PV capacity is
built cost-effectively, with VRE generation surpassing both
the lower RPS targets of 10% and 30% (Fig. 3). In other
words, if VRE costs follow the low-cost trajectory, wind
and solar PV can cost-effectively meet approximately 40%
of energy generation in 2030. However, when VRE costs
are high, these lower RPS target constraints are binding.
For higher RPS targets of 50% and 70%, the requirement
for total VRE capacity is 540-560 GW and 850-950 GW,
respectively.

If VRE costs remain constant until 2030 (’High Cost’
VRE scenario), 34 GW and 16 GW of new coal capacity
is built for the 10% and 30% RPS targets. If VRE costs
follow the low-cost trajectory, new coal capacity is limited
to zero or less than 1 GW in all RPS-target scenarios. For
higher RPS targets of 50% and 70%, no coal power plants
are built regardless of VRE or storage cost trajectories.

When RPS targets are low (10% and 30%), battery storage
is built only when both VRE and battery costs are low. In
these scenarios, low-cost battery storage of 22 GW helps
offset 9 GW of conventional capacity that is built when
storage costs are high. For the higher RPS target of 50%,
battery storage is built only when its costs are low, resulting
in approximately 50 GW of battery storage offsetting 17 GW
of natural gas capacity built when storage costs are high. For
the highest target of 70%, battery storage is required across
all VRE and storage cost scenarios to balance the increased
net-demand variability due to high shares of VRE generation.
Thus, greater shares of VRE generation increases the value
of energy storage in the electricity system, a finding which
is in line with previous studies [27].

Except for the highest RPS target of 70%, all RPS targets
result in investments in more wind capacity than solar
capacity. When the 2030 RPS target is raised from 50%
to 70%, approximately all additional VRE capacity is from
solar PV. When greater battery storage capacity is installed,
as a result of low battery storage costs, the share of solar
generation in total VRE generation increases. Battery storage
helps to balance increased diurnal variability in net-demand
caused by solar generation. Hence, storage incentivizes new
capacity of solar more than wind, the latter’s variability being
more inter-seasonal. Similar results were reported by other
studies where storage increased the relative value of solar
PV more than that of wind [9], [28].
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Fig. 2. New generation and storage capacity build-out. Wind, solar PV, and
battery storage capacities are total installed capacities in the 2030 electricity
system. Conventional generation capacity is new capacity built from 2018 to
2030. Renewable Portfolio Standard targets (RPS) are for 2030 and include
only wind and solar generation.

B. Electricity generation share

Greater shares of wind and solar generation forced by
higher RPS targets displace mainly coal generation (Fig. 3).
Shares of peaker and CCGT generation are small. Because of
both greater installed capacities and higher capacity factors,
shares of wind generation exceed those of solar generation
across all RPS targets and cost scenarios except for the 70%
RPS target scenarios with low-cost storage.

Renewable energy curtailment increases with higher re-
newable energy generation shares. Higher storage build-
out enabled by low cost of batteries reduce curtailment of
renewable energy. In the 70% RPS target scenario, the addi-
tional battery capacity in low-cost storage scenarios reduce
renewable energy curtailment to a quarter of that resulting in
the ’High Cost’ storage scenarios. However, battery storage
losses of 15% during the charge-discharge cycles requires
generation to exceed demand. Note that the economic costs
of these losses are included in the optimization problem.

Fig. 3. Electricity generation, variable renewable energy curtailment,
and battery losses as share of annual 2030 demand. Renewable Portfolio
Standard (RPS) targets are for 2030 and include only wind and solar
generation.

C. Battery storage power and energy capacity

In this analysis, we allowed the model to choose the
required power and energy capacity for battery storage
instead of specifying a fixed charge-discharge duration. The
ratio of energy to power capacity of the battery storage
required by the system depends on the variability of its net-
demand and the relative costs per kW (power) and kWh
(energy) of the storage technology. For all low-cost storage
scenarios, the energy-to-power ratio varies from 5 to 7 i.e.
the duration of battery storage required is between 5 to 7
hours (Fig. 4). As the renewable energy shares increase, the
duration of battery storage requirement reduces, potentially
because of the increased diurnal variability of net-demand,
which favors shorter duration batteries. Across all VRE and
battery cost scenarios of the 70% RPS target, the duration
of battery storage requirement is approximately 5 hours.

Our assumption of battery storage balancing across a
horizon of a single day likely affects the required energy-to-
power ratio. Balancing across longer timescales may change
this requirement.
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Fig. 4. New storage energy versus power capacity requirements. Renewable
Portfolio Standard (RPS) targets are for 2030 and include only wind and
solar generation.

D. Future work

The results presented in this analysis are preliminary. They
illustrate the capabilities of the model under development.
For reliability requirements, we intend to add planning re-
serve margin and primary, secondary, and regulation reserves
to the model. The value of battery storage will increase
because of its ability to provide ancillary services. We
will also add project availability constraints to reflect low
availability of certain power plants due to historical fuel
shortages and forced outages. These constraints will lead
to additional new generation and storage capacity, likely
from coal and natural gas generators and battery storage.
Additional renewable energy capacity may also be built but
will likely be limited because of the low capacity value of
both wind and solar in India.

The model presented here is a single node model without
any transmission constraints. A future version of the model
will include a higher spatial resolution of the transmission
infrastructure, with multiple nodes each representing either
a state load balancing area or a 400 kV substation with
transmission transfer capacities specified between nodes.
The model will then be able to optimize new transmission
capacity in conjunction with new generation and storage
capacity to meet future demand at least cost. Inclusion of
transmission constraints will also lead to higher generation
and storage capacity requirements, result in greater system
costs, and may increase the value of storage during congested
periods.

IV. CONCLUSION

In this study, we explored the effects of different cost
trajectories for solar PV, wind, and battery storage and mul-
tiple renewable energy generation targets on new capacity
investments in India’s electricity system until 2030. Co-
optimizing capital investments and operations costs enabled

the selection of cost-optimal generation and storage capaci-
ties to meet India’s future demand.

When costs of solar PV and wind decline from average
auction winning bids in 2017-18 at annual rates of 5% and
3% per year until 2030, almost no new coal generation
is built. If storage costs remain high i.e. 2018 real costs
remain constant until 2030, storage is cost-effective only
when the share of wind and solar generation is increased
to 70% of demand in 2030. But if costs of storage follow a
low-cost trajectory, investments in energy storage are cost-
effective at VRE shares of 40% and above. Greater storage
capacity reduces renewable energy curtailment and enables
an increase in the share of solar PV in total VRE installed
capacity.

We intend to improve the representation of India’s present
and future electricity system in the GridPath model. This
modeling platform will be made open-source within the next
year to aid in improving electricity system planning and
operations.

Low-cost battery storage will be crucial to cost-effectively
transition India towards deep decarbonization, especially
in the absence of low-cost natural gas and limited hydro
capacity. The GoI’s "Transformative Mobility and Battery
Storage" mission with its focus on battery manufacturing,
electric vehicles, and stationary storage is a step in the right
direction. Detailed electricity systems modeling can enable
cost-effective planning of storage capacity in conjunction
with investments in renewable and conventional generation.
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Electric Grid, Vol. IâĂŤNational Study,” 2017. [Online]. Available:
http://escholarship.org/uc/item/91n393jd.pdf

[4] R. Deshmukh, G. Wu, and A. Phadke, “Renewable Energy Zones
for Balancing Siting Trade-offs in India,” Lawrence Berkeley
National Laboratory, Tech. Rep. 1007272, 2017. [Online]. Available:
http://escholarship.org/uc/item/4p6886mz.pdf

[5] L. Goldie-Scot, “A Behind the Scenes Take on
Lithium-ion Battery Prices,” Mar. 2019. [Online].
Available: https://about.bnef.com/blog/behind-scenes-take-lithium-
ion-battery-prices/

[6] J. Nelson, J. Johnston, A. Mileva, M. Fripp, I. Hoffman,
A. Petros-Good, C. Blanco, and D. M. Kammen, “High-
resolution modeling of the western North American power
system demonstrates low-cost and low-carbon futures,” Energy
Policy, vol. 43, pp. 436–447, Apr. 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301421512000365

[7] W. Short, P. Sullivan, T. Mai, M. Mowers, C. Uriarte, N. Blair,
D. Heimiller, and A. Martinez, “Regional Energy Deployment System
(ReEDS),” National Renewable Energy Lab. (NREL), Golden, CO
(United States), Tech. Rep. NREL/TP-6A20-46534, Dec. 2011.
[Online]. Available: https://www.osti.gov/biblio/1031955

2nd Int'l Conference on Large-Scale Grid Integration of Renewable Energy in India| New Delhi, India | 4-6 Sep 2019
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