

2nd International Conference on Large-Scale Grid Integration of Renewable Energy

Development of Mechanisms to Incentivize Interstate Exchange of Renewable Energy

Krushna Kaant Gupta, Rajneesh Sharma, Shubhranshu Patnaik, Abhishek Dave

Renewable Integration and Sustainable Energy Initiative Under Greening the Grid (GTG-RISE), New Delhi, India

September 05, 2019, Thursday

Greening the Grid (GTG) Program A Partnership between USAID/India and Government of India

Contents

- I. Introduction
- 2. Key drivers of RE capacity addition in India
- 3. Issues in inter-state RE exchange
 - Regulatory
 - Transmission
 - Markets & Commercial
- 4. Interventions
- 5. Conclusion

Introduction

- Identify factors that currently inhibit trading/exchange of RE across the states
- Critical review of existing regulatory, policy, commercial, and infrastructural constraints to identify key challenges and potential measures that need to be addressed
- Suggesting measures to create an ecosystem for sustainable inter-state exchange of RE

Key drivers of RE capacity addition in India

- High RE potential in country (Solar 750 GW; Wind 302 GW)
- Eight states have over 60% & 90% of the total solar and wind potential in the country
- Uneven geographical distribution of the potential results in RE rich and deficit states
- Government incentives
- RPO Targets by SERCs
- Declining cost of RE generation boosting affordability

Issues in inter-state RE exchange

- Regulatory
- Transmission
- Markets & Commercial

Issues in Promoting Inter-state RE Exchange

Effective RE Grid Integration is Prerequisite for Promoting Inter-state RE Exchange

	Regulatory	Transmission	Market & Commercial
Issues	 Operational & commercial impact of Regulations Misalignment in regulations 	 Unavailability of transmission network Exemption of inter-state transmission charges 	 Incentivization to Flexible Operations of TPPs Handling of load generation imbalance through DSM
Analysis Performed	 Analysis of regulations pertaining to, RE generation forecast error Deviation in state's drawl from regional grid Ancillary services 	 Review of planned transmission network Cost recovery mechanism of planned transmission network 	 Compensatory framework for flexible operation of thermal power plant Imbalance market to incentivize the flexible energy sources

Regulatory Issue Analysis

Different RE Forecasting Penal Mechanisms

- RE forecasting error (as per F&S Regulation) is within ≤15% for around 90% times of predicted value
- Different penal mechanism at inter-state (PPA linked) & Intra-state (absolute value)
- Fix rate based penalty is deterrent for new low-cost RE developer connected to state's network, more impact on revenue

7

Regulatory Issue Analysis

State-wise Deviation Profiles in Western, Northern & Southern Regions in MW (FY2018-19)

Data Source: Respective Regional Load Dispatch Centre

- In the Northern region, deviation for states of RJ, UP, & Hr is high as compared to other states.
- Low RE penetrated states like UP & Hr
 having wider deviation range as compared to RJ.
- State with high RE penetration e.g. RJ, TN, KA encountering problem, in managing load-generation imbalance.

Rajasthan Case Study

Trend of Rajasthan State's Deviation Profile

- Rajasthan's schedule deviation stays within ±12% of schedule, the MW deviation from schedule drawal can be above 250 MW, which leads to additional deviation penalties.
- During Jan-March'19, average monthly over-drawl quantum decreased & underdrawl quantum increased.

Negative Correlation Between Wind & Regional DSM – Typical Day

- Impact of wind variability on state deviation DSM is visible. Similar instances of occurrences are spread across the year (for 23% time blocks of 4 hours each)
- Peak deviation i.e. over-drawl, as seen in the example has crossed 500 MW which is far beyond the permissible level of 250 MW for RE rich states
- Rajasthan need to equip with more flexible generating resources to minimize imbalances

Regulatory Issues Analysis

Ancillary Service Deployment for Grid Reliability

- Market linked DSM price impacted Ancillary Service Deployment.
- Since January 2019, ancillary service deployment for regulation-up, decreased substantially, while regulation-down service increases.

Issues in Transmission Infrastructure

Transmission Planning for RE Evacuation

Sr No	Region	Phase – I Capacity (GW)	Phase - II Capacity (GW)	Total Capacity (GW)
	Western Region			
Α	Gujarat	7	9	16
В	Maharashtra	I	6	7
С	Madhya Pradesh	2.5	2.5	5
	Sub-Total (WR)	10.5	17.7	28
2	Northern Region			
Α	Rajasthan	10	10	20
3	Southern Region			
Α	Tamil Nadu	1.5	1.5	3
В	Andhra Pradesh	4.5	3.5	8
С	Karnataka	2.5	5	7.5
	Sub-Total (SR)	8.5	10	18.5
	Total	29	37.5	66.5

- Planning to add transmission capacity to evacuate solar & wind capacity of 50 GW & 16.5 GW, respectively from seven RE rich states.
- Implementation of planned transmission capacity will require investment of INR 43,235 Cr.
- Funding to implement planned transmission network, will be contributed by project developers, solar park fund & socialization.

Market & Commercial Issues

Review of issues associated with policies, regulations, transmission infrastructure and, market and commercial

- Current PPAs & regulations do not have provisions for recovering financial losses due to flexible operations
- Commercial framework to compensate secondary ancillary services, from automatic generation control need to be developed
- Curtailment without compensation creates impact over project cash flow and debt-service cover ratio
- RE plants without PPAs do not participate in Day Ahead Market, as not allowed to revise schedule, leads to higher DSM penalties

Market & Commercial

Interventions

Regulatory Interventions

Roadmap to address identified issues and facilitate inter-state RE exchange

	1. Alignment in intra-state & inter-state RE forecasting penalty methodologies	
	1. Load forecasting regulations, for better grid discipline	
Immediate	 Development of technical & Commercial provisions/guidelines to enhance flexible operation in thermal power plants 	
	3. Development of AGC framework for secondary ancillary service response	
	 Facilitating surplus RE exchange and RE Trading on Power Exchange 	
Medium - Term	 Implementation of gate closure Development of imbalance market 	
Long - Term	Mechanism for equitable cost allocation for transmission infrastructure required for RE	

Technology & Information System Interventions

Roadmap to address identified issues and facilitate inter-state RE exchange

	 Development of Central Data Repository to create an eco-system data driven policy formulations 	
Immediate	 Development of IT implementation strategy to optimize cost of software, hardware and cyber- security 	
	 Improve real-time connectivity of metering & communication infrastructure to improve RE forecasts 	
Medium - Term	1. Implementation of communication & IT systems and its interfacing with different stakeholders for effective implementation of F&S regulation	
	 IT application to implement RE curtailment instruction & monitoring of compliance of instructions 	

Conclusion

Conclusion

- Based on stakeholder consultation, analysis focuses on addressing several challenges in relation to regulation, transmission infrastructure, & markets and commercial interventions
- To mange the complexity emanating from high RE share, technology and information system can play vital role
- It is envisioned that implementing these measures through a phased approach shall result in efficient grid integration of wind & solar power capacity
- An eco-system which addresses the operational & commercial issues will create an eco-system to promote inter-state renewable energy exchange
- Effective RE grid integration is critical for inter-state RE exchange in sustainable manner

GOVERNMENT OF INDIA **MINISTRY OF POWER**

- RISE Contracting Officer Representative: Monali Zeya Hazra, USAID India, ٠ mhazra@usaid.gov
- **Chief of Party: Tushar Sud,** RISE, tsud@deloitte.com ٠ 20